Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Kinetics

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 74

Full-Text Articles in Life Sciences

Understanding The Kinetics Of Laser-Induced Nanowelding Of Nanoparticles And The Motility Of Bacteria When Faced With Obstacles, Ariel Rogers Dec 2023

Understanding The Kinetics Of Laser-Induced Nanowelding Of Nanoparticles And The Motility Of Bacteria When Faced With Obstacles, Ariel Rogers

Graduate Theses and Dissertations

This dissertation has two focus areas: nanoparticle nanowelding and bacteria motility in the presence of micrometer sized structures. There are two main projects for the nanoparticle nanowelding studies: “Real-time imaging of laser-induced nanowelding in solution” and “Two-color laser-induced nanostructure shape modulation.” For the real-time imaging project, I used a fluorescence microscope, a 405 nm laser, and various python packages to quantify the average size of nanowelded nanostructures as a function of time and found that the average nanostructure growth over time fit the parameters of A¯(t) ∝ c0(1−e−t/τ), where c0 represents the initial concentration of nanoparticles in the solution and …


Understanding Rapid Intercalation Materials One Parameter At A Time, Wessel Van Den Bergh, Morgan Stefik Jun 2022

Understanding Rapid Intercalation Materials One Parameter At A Time, Wessel Van Den Bergh, Morgan Stefik

Faculty Publications

Demand for fast, energy-dense storage drives the research into nanoscale intercalation materials. Nanomaterials accelerate kinetics and can modify reaction path thermodynamics, intercalant solubility, and reversibility. The discovery of intercalation pseudocapacitance has opened questions about their fundamental operating principles. For example, are their capacitor-like current responses caused by storing energy in special near-surface regions or rather is this response due to normal intercalation limited by a slower faradaic surface-reaction? This review highlights emerging methods combining tailored nanomaterials with the process of elimination to disambiguate cause-and-effect at the nanoscale. This method is applied to multiple intercalation pseudocapacitive materials showing that the timescales …


A Kinetic Model For Blood Biomarker Levels After Mild Traumatic Brain Injury, Sima Azizi, Daniel B. Hier, Blaine Allen, Tayo Obafemi-Ajayi, Gayla R. Olbricht, Matthew S. Thimgan, Donald C. Wunsch Jul 2021

A Kinetic Model For Blood Biomarker Levels After Mild Traumatic Brain Injury, Sima Azizi, Daniel B. Hier, Blaine Allen, Tayo Obafemi-Ajayi, Gayla R. Olbricht, Matthew S. Thimgan, Donald C. Wunsch

Mathematics and Statistics Faculty Research & Creative Works

Traumatic brain injury (TBI) imposes a significant economic and social burden. The diagnosis and prognosis of mild TBI, also called concussion, is challenging. Concussions are common among contact sport athletes. After a blow to the head, it is often difficult to determine who has had a concussion, who should be withheld from play, if a concussed athlete is ready to return to the field, and which concussed athlete will develop a post-concussion syndrome. Biomarkers can be detected in the cerebrospinal fluid and blood after traumatic brain injury and their levels may have prognostic value. Despite significant investigation, questions remain as …


Visible Light Generation And Mechanistic Investigation Of High-Valent Metal-Oxo Species Supported By Different Ligands, Seth Ellis Klaine Apr 2021

Visible Light Generation And Mechanistic Investigation Of High-Valent Metal-Oxo Species Supported By Different Ligands, Seth Ellis Klaine

Masters Theses & Specialist Projects

Numerous transition metal catalysts have been designed as biomimetic model compounds for the active site of metalloenzymes found throughout Nature, most notably cytochrome P450 monooxygenases that carry out the oxidative transformations of organic substrates with near-perfect chemo-, regio-, and stereo-selectivity. The primary active oxidants in catalytic and enzymatic cycles are fleeting high-valent metal-oxo intermediates where the oxo ligand can transfer to an organic substrate in a process known as oxygen atom transfer (OAT).

In the present work, porphyrin-manganese(III), salen-chromium(III), and salenmanganese( III) derivatives were successfully synthesized and spectroscopically characterized using 1H NMR and UV-Vis spectroscopies. A facile photochemical approach was …


Kinetic Characterization Of Two C-Family Polymerases From The Gram-Positive Bacterium Staphylococcus Aureus, Sean P. Fagan Jan 2021

Kinetic Characterization Of Two C-Family Polymerases From The Gram-Positive Bacterium Staphylococcus Aureus, Sean P. Fagan

Legacy Theses & Dissertations (2009 - 2024)

In this dissertation, I review the fundamental processes and mechanisms for bacterial DNA replication, especially the mechanisms employed by high-fidelity DNA polymerases to replicate the genome. Unlike the prototypical bacterial system from Escherichia coli which uses a single C-family polymerase, DNA polymerase IIIα (Pol IIIα), to replicate the genome, low-GC content Gram-positive bacteria utilize two essential C-family polymerases, PolC and DnaE. PolC and DnaE work cooperatively to replicate the genome, with DnaE initiating synthesis from RNA-primers and PolC performing the bulk synthesis. Although atomic structures of both PolC and Pol IIIα are available, detailed pre-steady state kinetic analysis of the …


The Kinetic Signatures Of Antibody Binding To M. Genitalium Adhesin Protein Fragments, Margaret C. Lunn Jun 2020

The Kinetic Signatures Of Antibody Binding To M. Genitalium Adhesin Protein Fragments, Margaret C. Lunn

Honors Projects

Mycoplasma genitalium is a sexually-transmitted bacterial pathogen that persists in patients by adherence to cells through matrix glycoproteins and evasion of host antibodies. The MgpB and MgpC adherence proteins consist of variable and conserved regions. Variable regions undergo antigenic variation to avoid specific antibodies. However, the C-terminus (MgpB-4a) does not vary, is highly immunogenic, and antibodies to this region inhibit attachment and promote bacterial killing in vitro. To better understand how M. genitalium avoids clearance by antibodies to MgpB-4a in vivo we used surface plasmon resonance (SPR) to measure kinetic values of binding events. Binding of polyclonal rabbit antibodies (3935 …


Uncovering New Mechanisms Of Cdc34 And Cullin-Ring Activity, Spencer Hill Dec 2019

Uncovering New Mechanisms Of Cdc34 And Cullin-Ring Activity, Spencer Hill

UNLV Theses, Dissertations, Professional Papers, and Capstones

Ubiquitylation is a cellular regulatory system found in all eukaryotic cells, which has managed to find a role in most pathways imaginable. The system works fundamentally through the ligation of a small protein known as ubiquitin onto a substrate. Depending on the context of the ubiquitin ligation, the substrate can be directed towards a number of cellular fates, the best-studied being degradation of the substrate. While originally thought of as a signal for cellular disposal units to degrade aberrant proteins, we now know that ubiquitin plays a highly nuanced role in cellular epistasis, controlling everything from the cell cycle to …


Leaving Ligand Effects On Reactivity And Solubility Of Monofunctional Platinum(Ii) Anticancer Complexes, Heidi Linn Hruska Millay Oct 2019

Leaving Ligand Effects On Reactivity And Solubility Of Monofunctional Platinum(Ii) Anticancer Complexes, Heidi Linn Hruska Millay

Masters Theses & Specialist Projects

Monofunctional platinum(II) complexes, such as phenanthriplatin and pyriplatin, have notably different characteristics from the bifunctional anticancer complexes, such as cisplatin and oxaliplatin, which have detrimental toxicities and resistance associated with them. The unique properties of the monofunctional complexes may be exploited to target cancer cells without producing the toxic side effects associated with the current FDA-approved platinum-based anticancer drugs. To advance the understanding of these monofunctional platinum(II) complexes, this study replaced the chloride leaving ligand with an acetate group, which should increase solubility and alter the rate of reactivity with key amino acid and nucleotide targets. Phenanthriplatin and pyriplatin compounds …


Discovery Of Platelet-Type 12-Human Lipoxygenase Selective Inhibitors By High-Throughput Screening Of Structurally Diverse Libraries., Joshua D. Deschamps, Jeffrey T. Gautschi, Stephanie Whitman, Tyler A. Johnson, Nadine C. Gassner, Phillip Crews, Theodore R. Holman Feb 2019

Discovery Of Platelet-Type 12-Human Lipoxygenase Selective Inhibitors By High-Throughput Screening Of Structurally Diverse Libraries., Joshua D. Deschamps, Jeffrey T. Gautschi, Stephanie Whitman, Tyler A. Johnson, Nadine C. Gassner, Phillip Crews, Theodore R. Holman

Tyler Johnson

Human lipoxygenases (hLO) have been implicated in a variety of diseases and cancers and each hLO isozyme appears to have distinct roles in cellular biology. This fact emphasizes the need for discovering selective hLO inhibitors for both understanding the role of specific lipoxygenases in the cell and developing pharmaceutical therapeutics. To this end, we have modified a known lipoxygenase assay for high-throughput (HTP) screening of both the National Cancer Institute (NCI) and the UC Santa Cruz marine extract library (UCSC-MEL) in search of platelet-type 12-hLO (12-hLO) selective inhibitors. The HTP screen led to the characterization of five novel 12-hLO inhibitors …


A Rational Approach For Creating Peptides Mimicking Antibody Binding, Sameer Sachdeva, Hyun Joo, Jerry Tsai, Bhaskara Jasti, Xiaoling Li Jan 2019

A Rational Approach For Creating Peptides Mimicking Antibody Binding, Sameer Sachdeva, Hyun Joo, Jerry Tsai, Bhaskara Jasti, Xiaoling Li

School of Pharmacy Faculty Articles

This study reports a novel method to design peptides that mimic antibody binding. Using the Knob-Socket model for protein-protein interaction, the interaction surface between Cetuximab and EGFR was mapped. EGFR binding peptides were designed based on geometry and the probability of the mapped knob-sockets pairs. Designed peptides were synthesized and then characterized for binding specificity, affinity, cytotoxicity of drug-peptide conjugate and inhibition of phosphorylation. In cell culture studies, designed peptides specifically bind and internalize to EGFR overexpressing cells with three to four-fold higher uptake compared to control cells that do not overexpress EGFR. The designed peptide, Pep11, bound to EGFR …


The Distinctive Regulatory Mechanisms Of Bacterial Acetyl-Coa Carboxylase, Alexandra Leigh Evans Sep 2018

The Distinctive Regulatory Mechanisms Of Bacterial Acetyl-Coa Carboxylase, Alexandra Leigh Evans

LSU Doctoral Dissertations

Metabolic Regulation is a complex system used to control cellular metabolism in response to conditions in the cell’s environment. For most enzymes, the cell can rely upon a minimal amount of regulation; however, critical enzymes, such as acetyl-CoA carboxylase, must be regulated at multiple levels. Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis. In bacteria, acetyl-CoA carboxylase forms a complex of three subunits–biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase–which catalyze the carboxylation of acetyl-CoA to form malonyl-CoA via two half-reactions. In the first half-reaction, biotin covalently linked to biotin carboxyl carrier protein is carboxylated by biotin …


Development Of Rapid, Homogeneous Assay For Investigating Isopeptide Bond Formation Using Fluorescence Polarization/Depolarization Measurements, Samuel Patricc Kasson Aug 2018

Development Of Rapid, Homogeneous Assay For Investigating Isopeptide Bond Formation Using Fluorescence Polarization/Depolarization Measurements, Samuel Patricc Kasson

MSU Graduate Theses

Autocatalytic intramolecular isopeptide bonds have been found in nature in certain gram-positive bacterial pilus structures. Recently, splitting of these domains that are capable of autocatalytic intramolecular isopeptide bond formation have been applied to create stable, selective, bio-orthogonal Catcher/Tag systems. The CnaB2 domain found in the FbaB pilus structure of Streptococcus pyogenes, has yielded the Catcher/Tag, Protein/Peptide systems termed SpyCatchter and SpyTag. Recent study has focused on tag optimization, stability and bio-orthogonality evaluation, along with applications in bioconjugation. I have recombinantly expressed SpyCatcher and SpyTag-fused proteins in E.coli, and conjugated them to fluorescent probes in order for use in fluorescence polarization/depolarization …


Modeling And Analyzing An Optogenetic System For Photoactivatable Protein Dissociation, Anvin Thomas, James Schaff May 2018

Modeling And Analyzing An Optogenetic System For Photoactivatable Protein Dissociation, Anvin Thomas, James Schaff

Honors Scholar Theses

Computational modeling of cell-cell interactions can grant clues and can answer questions about an experiment, especially for observations about binding interactions and kinetics. This approach was used to investigate an interaction between a light-oxygen-voltage (LOV) domain and an engineered protein called Zdark (Zdk). The LOV domain is membrane-bound while Zdk is cytosolic. The LOV domain and Zdk bind strongly in dark (Kd 26.2 nM), and weakly upon exposure to blue light (Kd > 4 μM). Total internal reflection fluorescence (TIRF) images are acquired of Zdk, the fluorescent species bound to a mCherry tag, and the loss of fluorescence is …


Endonucleolytic Cleavage In The Expansion Segment 7 Of 25s Rrna Is An Early Marker Of Low-Level Oxidative Stress In Yeast, Daniel Shedlovskiy, Jessica A Zinskie, Ethan Gardner, Dimitri G Pestov, Natalia Shcherbik Nov 2017

Endonucleolytic Cleavage In The Expansion Segment 7 Of 25s Rrna Is An Early Marker Of Low-Level Oxidative Stress In Yeast, Daniel Shedlovskiy, Jessica A Zinskie, Ethan Gardner, Dimitri G Pestov, Natalia Shcherbik

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The ability to detect and respond to oxidative stress is crucial to the survival of living organisms. In cells, sensing of increased levels of reactive oxygen species (ROS) activates many defensive mechanisms that limit or repair damage to cell components. The ROS-signaling responses necessary for cell survival under oxidative stress conditions remain incompletely understood, especially for the translational machinery. Here, we found that drug treatments or a genetic deficiency in the thioredoxin system that increase levels of endogenous hydrogen peroxide in the yeast Saccharomyces cerevisiae promote site-specific endonucleolytic cleavage in 25S ribosomal RNA (rRNA) adjacent to the c loop of …


Using Competition Assays To Quantitatively Model Cooperative Binding By Transcription Factors And Other Ligands., Jacob Peacock, James B Jaynes Nov 2017

Using Competition Assays To Quantitatively Model Cooperative Binding By Transcription Factors And Other Ligands., Jacob Peacock, James B Jaynes

Department of Biochemistry and Molecular Biology Faculty Papers

BACKGROUND: The affinities of DNA binding proteins for target sites can be used to model the regulation of gene expression. These proteins can bind to DNA cooperatively, strongly impacting their affinity and specificity. However, current methods for measuring cooperativity do not provide the means to accurately predict binding behavior over a wide range of concentrations.

METHODS: We use standard computational and mathematical methods, and develop novel methods as described in Results.

RESULTS: We explore some complexities of cooperative binding, and develop an improved method for relating in vitro measurements to in vivo function, based on ternary complex formation. We derive …


Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried Jul 2017

Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried

Center for Structural Biology Faculty Publications

Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. The search for these lesions, through a vast excess of competing, unmodified genomic DNA, is a mechanistic challenge that may limit the repair rate in vivo. Here, we examine influences of DNA secondary structure and twist on protein–protein interactions in cooperative AGT complexes formed on lesion-free DNAs that model the unmodified parts of the genome. We used a new approach to resolve nearest neighbor (nn) and long-range (lr) components from the ensemble-average cooperativity, ωave. We found …


Synthesis, Kinetic And Catalytic Studies Of Manganese Complexes With Corrole And Porphyrin Ligands, Haleh Jeddi Apr 2017

Synthesis, Kinetic And Catalytic Studies Of Manganese Complexes With Corrole And Porphyrin Ligands, Haleh Jeddi

Masters Theses & Specialist Projects

High-valent transition metal-oxo intermediates play a significant role in the catalytic cycle of the ubiquitous cytochrome P450 enzymes and in biomimetic catalytic systems. In this work, manganese(III) porphyrin and corrole systems (2) were synthesized and characterized by UV-vis absorbance and 1H-NMR, matching literaturereported spectroscopic data. Manganese(V)-oxo corroles (3) and a manganese(IV)-oxo porphyrin (4) were successfully generated by chemical oxidation using mchloroperoxybenzoic acid (m-CPBA), and their oxidation reactions with organic reductants were comparatively investigated. Results from single-turnover kinetic studies indicate that in the tris(pentafluorophenyl)corrole system (3a), the active oxidizing intermediate differs in different solvents. The active oxidizing intermediate in acetonitrile is …


Mechanism Of Rapid Electron Transfer Reactions Involving Cytochrome Bc1, Cytochrome C And Cytochrome Oxidase, Jeremy Erik Durchman Aug 2016

Mechanism Of Rapid Electron Transfer Reactions Involving Cytochrome Bc1, Cytochrome C And Cytochrome Oxidase, Jeremy Erik Durchman

Graduate Theses and Dissertations

Electron transfer between mitochondrial proteins complexes represents the primary means by which living things acquire the requisite energy for survival. The coupling of electron transfer to proton translocation creates an electrochemical gradient that drives the synthesis of highly energetic compounds such as ATP. The purpose of these studies is to measure rates of electron transfer and elucidate the important governing factors in the redox events involving cytochrome bc1, cytochrome c and cytochrome oxidase. Using rapid initiation of redox events triggered by laser flash excitation of ruthenium compounds, and strategically monitoring unique spectral properties of these proteins in the visible region …


Steroid Binding To Autotaxin Links Bile Salts And Lysophosphatidic Acid Signalling, Willem-Jan Keune, Jens Hausmann, Ruth Bolier, Dagmar Tolenaars, Andreas Kremer, Tatjana Heidebrecht, Robbie P. Joosten, Manjula Sunkara, Andrew J. Morris, Elisa Matas-Rico, Wouter H. Moolenaar, Ronald P. Oude Elferink, Anastassis Perrakis Apr 2016

Steroid Binding To Autotaxin Links Bile Salts And Lysophosphatidic Acid Signalling, Willem-Jan Keune, Jens Hausmann, Ruth Bolier, Dagmar Tolenaars, Andreas Kremer, Tatjana Heidebrecht, Robbie P. Joosten, Manjula Sunkara, Andrew J. Morris, Elisa Matas-Rico, Wouter H. Moolenaar, Ronald P. Oude Elferink, Anastassis Perrakis

Gill Heart & Vascular Institute Faculty Publications

Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors …


Frontal Plane Comparison Between Drop Jump And Vertical Jump: Implications For The Assessment Of Acl Risk Of Injury, Guilherme Manna Cesar, Curtis L. Tomasevicz, Judith M. Burnfield Jan 2016

Frontal Plane Comparison Between Drop Jump And Vertical Jump: Implications For The Assessment Of Acl Risk Of Injury, Guilherme Manna Cesar, Curtis L. Tomasevicz, Judith M. Burnfield

Athletic Performance Research

The potential to use the vertical jump (VJ) to assess both athletic performance and risk of anterior cruciate ligament (ACL) injury could have widespread clinical implications since VJ is broadly used in high school, university, and professional sport settings. Although drop jump (DJ) and VJ observationally exhibit similar lower extremity mechanics, the extent to which VJ can also be used as screening tool for ACL injury risk has not been assessed. This study evaluated whether individuals exhibit similar knee joint frontal plane kinematic and kinetic patterns when performing VJs compared with DJs. Twenty-eight female collegiate athletes performed DJs and VJs. …


Thermodynamics And Kinetics Of The Three-Way Junction Of Phi29 Motor Prna And Its Assembly Into Nanoparticles For Therapeutic Delivery To Prostate Cancer, Daniel W. Binzel Jan 2016

Thermodynamics And Kinetics Of The Three-Way Junction Of Phi29 Motor Prna And Its Assembly Into Nanoparticles For Therapeutic Delivery To Prostate Cancer, Daniel W. Binzel

Theses and Dissertations--Pharmacy

The emerging field of RNA nanotechnology necessitates creation of functional RNA nanoparticles, but has been limited by particle instability. Previously, it was found the three-way junction (3WJ) of the Phi29 DNA packaging motor pRNA was found to be ultra-stable and assemble in solution without the presence of metal ions. The three-way junction is composed of three short oligo RNA strands and proven to be thermodynamically stable. Here the assembly mechanism, thermodynamic and enzymatic stabilities, and kinetics are examined in order to understand the stability behind this unique motif. Thermodynamic and kinetics studies found that the pRNA 3WJ formed out of …


A Conserved Three-Nucleotide Core Motif Defines Musashi Rna Binding Specificity, Nancy Zearfoss, Laura Deveau, Carina Clingman, Eric Schmidt, Emily Johnson, Francesca Massi, Sean Ryder Sep 2015

A Conserved Three-Nucleotide Core Motif Defines Musashi Rna Binding Specificity, Nancy Zearfoss, Laura Deveau, Carina Clingman, Eric Schmidt, Emily Johnson, Francesca Massi, Sean Ryder

Sean P. Ryder

Musashi (MSI) family proteins control cell proliferation and differentiation in many biological systems. They are overexpressed in tumors of several origins, and their expression level correlates with poor prognosis. MSI proteins control gene expression by binding RNA and regulating its translation. They contain two RNA recognition motif (RRM) domains, which recognize a defined sequence element. The relative contribution of each nucleotide to the binding affinity and specificity is unknown. We analyzed the binding specificity of three MSI family RRM domains using a quantitative fluorescence anisotropy assay. We found that the core element driving recognition is the sequence UAG. Nucleotides outside …


Intra-Domain Cross-Talk Regulates Serine-Arginine Protein Kinase 1-Dependent Phosphorylation And Splicing Function Of Transformer 2Β1, Michael A. Jamros, Brandon E. Aubol, Malik M. Keshwani, Zhaiyi Zhang, Stefan Stamm, Joseph A. Adams Jul 2015

Intra-Domain Cross-Talk Regulates Serine-Arginine Protein Kinase 1-Dependent Phosphorylation And Splicing Function Of Transformer 2Β1, Michael A. Jamros, Brandon E. Aubol, Malik M. Keshwani, Zhaiyi Zhang, Stefan Stamm, Joseph A. Adams

Molecular and Cellular Biochemistry Faculty Publications

Transformer 2β1 (Tra2β1) is a splicing effector protein composed of a core RNA recognition motif flanked by two arginine-serine-rich (RS) domains, RS1 and RS2. Although Tra2β1-dependent splicing is regulated by phosphorylation, very little is known about how protein kinases phosphorylate these two RS domains. We now show that the serine-arginine protein kinase-1 (SRPK1) is a regulator of Tra2β1 and promotes exon inclusion in the survival motor neuron gene 2 (SMN2). To understand how SRPK1 phosphorylates this splicing factor, we performed mass spectrometric and kinetic experiments. We found that SRPK1 specifically phosphorylates 21 serines in RS1, a process facilitated …


Molecular Effects Of Cancer-Associated Somatic Mutations On The Structural And Target Recognition Properties Of Keap1., Halema Khan, Ryan C Killoran, Anne Brickenden, Jingsong Fan, Daiwen Yang, Wing-Yiu Choy Apr 2015

Molecular Effects Of Cancer-Associated Somatic Mutations On The Structural And Target Recognition Properties Of Keap1., Halema Khan, Ryan C Killoran, Anne Brickenden, Jingsong Fan, Daiwen Yang, Wing-Yiu Choy

Biochemistry Publications

Kelch-like ECH-associated protein 1 (Keap1) plays an important regulatory role in the nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent oxidative stress response pathway. It functions as a repressor of Nrf2, a key transcription factor that initiates the expression of cytoprotective enzymes during oxidative stress to protect cells from damage caused by reactive oxygen species. Recent studies show that mutations of Keap1 can lead to aberrant activation of the antioxidant pathway, which is associated with different types of cancers. To gain a mechanistic understanding of the links between Keap1 mutations and cancer pathogenesis, we have investigated the molecular effects of a …


Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer Jan 2015

Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

The rapid evolution of HIV under selective drug pressure has led to multidrug resistant (MDR) strains that evade standard therapies. We designed highly potent HIV-1 protease inhibitors (PIs) using the substrate envelope model, which confines inhibitors within the consensus volume of natural substrates, providing inhibitors less susceptible to resistance because a mutation affecting such inhibitors will simultaneously affect viral substrate processing. The designed PIs share a common chemical scaffold but utilize various moieties that optimally fill the substrate envelope, as confirmed by crystal structures. The designed PIs retain robust binding to MDR protease variants and display exceptional antiviral potencies against …


Ph Dependence Of Cyanide And Imidazole Binding To The Heme Domains Of Sinorhizobium Meliloti And Bradyrhizobium Japonicum Fixl, Anil K. Bidwai, Angela J. Ahrendt, John S. Sullivan, Lidia B. Vitello, James E. Erman Jan 2015

Ph Dependence Of Cyanide And Imidazole Binding To The Heme Domains Of Sinorhizobium Meliloti And Bradyrhizobium Japonicum Fixl, Anil K. Bidwai, Angela J. Ahrendt, John S. Sullivan, Lidia B. Vitello, James E. Erman

Faculty Publications & Research

Equilibrium and kinetic properties of cyanide and imidazole binding to the heme domains of Sinorhizobium meliloti and Bradyrhizobium japonicum FixL (SmFixLH and BjFixLH) have been investigated between pH 5 and 11. KD determinations were made at integral pH values, with the strongest binding at pH 9 for both ligands. KD for the cyanide complexes of BjFixLH and SmFixLH is 0.15 ± 0.09 and 0.50 ± 0.20 μM, respectively, and 0.70 ± 0.01 mM for imido-BjFixLH. The association rate constants are pH dependent with maximum values of 443 ± 8 and 252 ± 61 …


Platination Kinetics: Insight Into Rna-Cisplatin Interactions As A Probe For Rna Microenvironments, Gayani Dedduwa-Mudalige Jan 2015

Platination Kinetics: Insight Into Rna-Cisplatin Interactions As A Probe For Rna Microenvironments, Gayani Dedduwa-Mudalige

Wayne State University Dissertations

RNAs are crucial for many cellular functions. Thus, studying ligand-RNA interactions and their dynamics in response to changes in the surrounding environment is important. In spite of the well-known DNA coordination, current research also indicates cisplatin binding to RNA. Kinetic studies of rRNA platination reactions are largely unexplored. This research was conducted to achieve two objectives. First, a broad kinetic study was carried out to investigate the cisplatin-rRNA interactions. The structure, function, and ligand interactions depend on RNA microenvironments. Second, the application of platination kinetics as a tool to interrogate RNA electrostatic environments was explored.

Three model rRNA hairpins from …


Nuclear Transport Of Single Molecules: Dwell Times At The Nuclear Pore Complex, Ulrich Kubitscheck, David Grunwald, Andreas Hoekstra, Daniel Rohleder, Thorsten Kues, Jan Peter Siebrasse, Reiner Peters Nov 2014

Nuclear Transport Of Single Molecules: Dwell Times At The Nuclear Pore Complex, Ulrich Kubitscheck, David Grunwald, Andreas Hoekstra, Daniel Rohleder, Thorsten Kues, Jan Peter Siebrasse, Reiner Peters

David Grünwald

The mechanism by which macromolecules are selectively translocated through the nuclear pore complex (NPC) is still essentially unresolved. Single molecule methods can provide unique information on topographic properties and kinetic processes of asynchronous supramolecular assemblies with excellent spatial and time resolution. Here, single-molecule far-field fluorescence microscopy was applied to the NPC of permeabilized cells. The nucleoporin Nup358 could be localized at a distance of 70 nm from POM121-GFP along the NPC axis. Binding sites of NTF2, the transport receptor of RanGDP, were observed in cytoplasmic filaments and central framework, but not nucleoplasmic filaments of the NPC. The dwell times of …


Intranuclear Binding Kinetics And Mobility Of Single Native U1 Snrnp Particles In Living Cells, David Grunwald, Beatrice Spottke, Volker Buschmann, Ulrich Kubitscheck Nov 2014

Intranuclear Binding Kinetics And Mobility Of Single Native U1 Snrnp Particles In Living Cells, David Grunwald, Beatrice Spottke, Volker Buschmann, Ulrich Kubitscheck

David Grünwald

Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are splicing factors, which are diffusely distributed in the nucleoplasm and also concentrated in nuclear speckles. Fluorescently labeled, native U1 snRNPs were microinjected into the cytoplasm of living HeLa cells. After nuclear import single U1 snRNPs could be visualized and tracked at a spatial precision of 30 nm at a frame rate of 200 Hz employing a custom-built microscope with single-molecule sensitivity. The single-particle tracks revealed that most U1 snRNPs were bound to specific intranuclear sites, many of those presumably representing pre-mRNA splicing sites. The dissociation kinetics from these sites showed a multiexponential decay …


Autonomy And Robustness Of Translocation Through The Nuclear Pore Complex: A Single-Molecule Study, Thomas Dange, David Grunwald, Antje Grunwald, Reiner Peters, Ulrich Kubitscheck Nov 2014

Autonomy And Robustness Of Translocation Through The Nuclear Pore Complex: A Single-Molecule Study, Thomas Dange, David Grunwald, Antje Grunwald, Reiner Peters, Ulrich Kubitscheck

David Grünwald

All molecular traffic between nucleus and cytoplasm occurs via the nuclear pore complex (NPC) within the nuclear envelope. In this study we analyzed the interactions of the nuclear transport receptors kapalpha2, kapbeta1, kapbeta1DeltaN44, and kapbeta2, and the model transport substrate, BSA-NLS, with NPCs to determine binding sites and kinetics using single-molecule microscopy in living cells. Recombinant transport receptors and BSA-NLS were fluorescently labeled by AlexaFluor 488, and microinjected into the cytoplasm of living HeLa cells expressing POM121-GFP as a nuclear pore marker. After bleaching the dominant GFP fluorescence the interactions of the microinjected molecules could be studied using video microscopy …