Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Improving Carbon Efficiency Through Container Size Optimization And Shipment Consolidation, Nang Laik Ma, Kar Way Tan, Edwin Lik Ming Chong Sep 2016

Improving Carbon Efficiency Through Container Size Optimization And Shipment Consolidation, Nang Laik Ma, Kar Way Tan, Edwin Lik Ming Chong

Research Collection School Of Computing and Information Systems

Purpose: Many manufacturing companies that ship goods through full container loads found themselves under-utilizing the containers and resulting in higher carbon footprint per volume shipment. One of the reasons is the choice of non-ideal container sizes for their shipments. Consolidation fills up the containers more efficiently that reduces the overall carbon footprint. The objective of this paper is to support decisions on selection of appropriate combination of container sizes and shipment consolidation for a manufacturing company. We develop two-steps model which first takes the volumes to be shipped as an input and provide the combination of container sizes required; then …


Exploring Agricultural Production Systems And Their Fundamental Components With System Dynamics Modelling, Jeffrey P. Walters, David W. Archer, Gretchen F. Sassenrath, John R. Hendrickson, Jon D. Hanson, John M. Halloran, Peter Vadas, Vladimir J. Alarcon Jan 2016

Exploring Agricultural Production Systems And Their Fundamental Components With System Dynamics Modelling, Jeffrey P. Walters, David W. Archer, Gretchen F. Sassenrath, John R. Hendrickson, Jon D. Hanson, John M. Halloran, Peter Vadas, Vladimir J. Alarcon

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex ways to influence production sustainability. In a mixed-methods approach, we combine qualitative and quantitative data to develop and simulate a system dynamics model that explores the systemic interaction of these drivers on the economic, environmental and social sustainability of agricultural production. We then use this model to evaluate the role of each driver in determining the differences in sustainability …