Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2007

Optimal Control

Articles 1 - 3 of 3

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Online Reinforcement Learning-Based Neural Network Controller Design For Affine Nonlinear Discrete-Time Systems, Qinmin Yang, Jagannathan Sarangapani Jul 2007

Online Reinforcement Learning-Based Neural Network Controller Design For Affine Nonlinear Discrete-Time Systems, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for general multi-input and multi- output affine unknown nonlinear discrete-time systems in the presence of bounded disturbances. Adaptive critic designs consist of two entities, an action network that produces optimal solution and a critic that evaluates the performance of the action network. The critic is termed adaptive as it adapts itself to output the optimal cost-to-go function and the action network is adapted simultaneously based on the information from the critic. In our online learning method, one NN is designated as the …


Near Optimal Output-Feedback Control Of Nonlinear Discrete-Time Systems In Nonstrict Feedback Form With Application To Engines, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jan 2007

Near Optimal Output-Feedback Control Of Nonlinear Discrete-Time Systems In Nonstrict Feedback Form With Application To Engines, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule. …


Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani Jan 2007

Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation. In the online NN reinforcement learning method, one NN is designated as the critic NN, which approximates the long-term cost function by assuming that the states of the nonlinear systems is available for measurement. An action NN is employed to derive an optimal control signal to track a desired system trajectory while minimizing the cost function. Online updating weight tuning schemes for these two NNs are also derived. By using the Lyapunov approach, …