Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2005

Adaptive Neural Network (NN) Controller

Articles 1 - 1 of 1

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Neural Network-Based Control Of Nonlinear Discrete-Time Systems In Non-Strict Form, Jagannathan Sarangapani, Zheng Chen, Pingan He Jan 2005

Neural Network-Based Control Of Nonlinear Discrete-Time Systems In Non-Strict Form, Jagannathan Sarangapani, Zheng Chen, Pingan He

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement learning-based adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to deliver a desired tracking performance for a class of non-strict feedback nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The adaptive critic NN controller architecture includes a critic NN and two action NNs. The critic NN approximates certain strategic utility function whereas the action neural networks are used to minimize both the strategic utility function and the unknown dynamics estimation errors. The NN weights are tuned online so as to minimize certain performance index. By using gradient descent-based ...