Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Feedback Linearization Based Power System Stabilizer Design With Control Limits, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Jagannathan Sarangapani Aug 2004

Feedback Linearization Based Power System Stabilizer Design With Control Limits, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In power system controls, simplified analytical models are used to represent the dynamics of power system and controller designs are not rigorous with no stability analysis. One reason is because the power systems are complex nonlinear systems which pose difficulty for analysis. This paper presents a feedback linearization based power system stabilizer design for a single machine infinite bus power system. Since practical operating conditions require the magnitude of control signal to be within certain limits, the stability of the control system under control limits is also analyzed. Simulation results under different kinds of operating conditions show that the controller …


Neural Network Controller For Manipulation Of Micro-Scale Objects, Vijayakumar Janardhan, Pingan He, Jagannathan Sarangapani Jan 2004

Neural Network Controller For Manipulation Of Micro-Scale Objects, Vijayakumar Janardhan, Pingan He, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement learning-based neural network (RLNN) controller is presented for the manipulation and handling of micro-scale objects in a microelectromechanical system (MEMS). In MEMS, adhesive, surface tension, friction and van der Waals forces are dominant. Moreover, these forces are typically unknown. The RLNN controller consists of an action NN for compensating the unkoown system dynamics, and a critic NN to tune the weights of the action NN. Using the Lyapunov approach, the uniformly ultimate houndedness (UUB) of the closed-loop tracking error and weight estimates are shown by using a novel weight updates. Simulation results are presented to substantiate the …


Adaptive Force-Balancing Control Of Mems Gyroscope With Actuator Limits, Mohammed Hameed, Jagannathan Sarangapani Jan 2004

Adaptive Force-Balancing Control Of Mems Gyroscope With Actuator Limits, Mohammed Hameed, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This work presents an adaptive force-balancing control (AFBC) scheme with actuator limits for a MEMS Z-axis gyroscope. The purpose of the adaptive force-balancing control is to identify major fabrication imperfections so that they are properly compensated unlike the case of conventional force-balancing controlled gyroscope. The proposed AFBC scheme controls the vibratory modes of the proof mass while ensuring that the control input satisfies the magnitude constraints and the performance of the gyroscope is enhanced in the presence of fabrication uncertainties. Consequently, commonly reported problems of MEMS gyroscope such as quadrature compensation, drive and sense axes frequency tuning are not needed …


A Distributed Power Control Mac Protocol For Wireless Ad-Hoc Networks., Maciej Jan Zawodniok, Jagannathan Sarangapani Jan 2004

A Distributed Power Control Mac Protocol For Wireless Ad-Hoc Networks., Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A novel distributed power control (DPC)⋅ scheme and a MAC protocol for wireless ad hoc networks in the presence of radio channel uncertainties such as path loss, Shadowing and Rayleigh fading is presented. The DPC quickly estimates the time-varying nature of the channel and uses the information to select a suitable transmitter power value in order to maintain a target Signal-to-Interference ratio (SIR) at the receiver. The standard assumption of a constant interference during a link's power update used in other works is relaxed. The performance of the proposed DPC is demonstrated analytically. The power used for all RTS-CTS-DATA-ACK frames …


Adaptive Critic Neural Network-Based Object Grasping Control Using A Three-Finger Gripper, Gustavo Galan, Jagannathan Sarangapani Jan 2004

Adaptive Critic Neural Network-Based Object Grasping Control Using A Three-Finger Gripper, Gustavo Galan, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Grasping of objects has been a challenging task for robots. The complex grasping task can be defined as object contact control and manipulation subtasks. In this paper, object contact control subtask is defined as the ability to follow a trajectory accurately by the fingers of a gripper. The object manipulation subtask is defined in terms of maintaining a predefined applied force by the fingers on the object. A sophisticated controller is necessary since the process of grasping an object without a priori knowledge of the object's size, texture, softness, gripper, and contact dynamics is rather difficult. Moreover, the object has …


Discrete-Time Neural Network Output Feedback Control Of Nonlinear Systems In Non-Strict Feedback Form, Pingan He, Jagannathan Sarangapani Jan 2004

Discrete-Time Neural Network Output Feedback Control Of Nonlinear Systems In Non-Strict Feedback Form, Pingan He, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

An adaptive neural network (NN)-based output feedback controller is proposed to deliver a desired tracking performance for a class of discrete-time nonlinear systems, which is represented in non-strict feedback form. The NN backstepping approach is utilized to design the adaptive output feedback controller consisting of: 1) a NN observer to estimate the system states with the input-output data, and 2) two NNs to generate the virtual and actual control inputs, respectively. The non-causal problem in the discrete-time backstepping design is avoided by using the universal NN approximator. The persistence excitation (PE) condition is relaxed both in the NN observer and …


Decentralized Neural Network Control Of A Class Of Large-Scale Systems With Unknown Interconnection, Wenxin Liu, Jagannathan Sarangapani, Donald C. Wunsch, Mariesa Crow Jan 2004

Decentralized Neural Network Control Of A Class Of Large-Scale Systems With Unknown Interconnection, Wenxin Liu, Jagannathan Sarangapani, Donald C. Wunsch, Mariesa Crow

Electrical and Computer Engineering Faculty Research & Creative Works

A novel decentralized neural network (DNN) controller is proposed for a class of large-scale nonlinear systems with unknown interconnections. The objective is to design a DNN for a class of large-scale systems which do not satisfy the matching condition requirement. The NNs are used to approximate the unknown subsystem dynamics and the interconnections. The DNN is designed using the back stepping methodology with only local signals for feedback. All of the signals in the closed loop (system states and weights estimation errors) are guaranteed to be uniformly ultimately bounded and eventually converge to a compact set.