Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Electrical and Computer Engineering Faculty Research & Creative Works

Learning (Artificial Intelligence)

Physical Sciences and Mathematics

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jul 2007

Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule ...


Online Reinforcement Learning-Based Neural Network Controller Design For Affine Nonlinear Discrete-Time Systems, Qinmin Yang, Jagannathan Sarangapani Jul 2007

Online Reinforcement Learning-Based Neural Network Controller Design For Affine Nonlinear Discrete-Time Systems, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for general multi-input and multi- output affine unknown nonlinear discrete-time systems in the presence of bounded disturbances. Adaptive critic designs consist of two entities, an action network that produces optimal solution and a critic that evaluates the performance of the action network. The critic is termed adaptive as it adapts itself to output the optimal cost-to-go function and the action network is adapted simultaneously based on the information from the critic. In our online learning method, one NN is designated as ...


Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani Jan 2007

Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation. In the online NN reinforcement learning method, one NN is designated as the critic NN, which approximates the long-term cost function by assuming that the states of the nonlinear systems is available for measurement. An action NN is employed to derive an optimal control signal to track a desired system trajectory while minimizing the cost function. Online updating weight tuning schemes for these two NNs are also derived. By using the Lyapunov ...


Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He Jan 2006

Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines running at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle dispersion of heat release even though such operation can significantly reduce NOx emissions and improve fuel efficiency by as much as 5-10%. A suite of neural network (NN) controller without and with reinforcement learning employing output feedback has shown ability to reduce the nonlinear cyclic dispersion observed under lean operating conditions. The neural network controllers consists of three NN: a) A NN observer to estimate the states of the engine such as total fuel and air; b) a second NN for generating virtual input ...


Adaptive Critic-Based Neural Network Controller For Uncertain Nonlinear Systems With Unknown Deadzones, Pingan He, Jagannathan Sarangapani, S. N. Balakrishnan Jan 2002

Adaptive Critic-Based Neural Network Controller For Uncertain Nonlinear Systems With Unknown Deadzones, Pingan He, Jagannathan Sarangapani, S. N. Balakrishnan

Electrical and Computer Engineering Faculty Research & Creative Works

A multilayer neural network (NN) controller in discrete-time is designed to deliver a desired tracking performance for a class of nonlinear systems with input deadzones. This multilayer NN controller has an adaptive critic NN architecture with two NNs for compensating the deadzone nonlinearity and a third NN for approximating the dynamics of the nonlinear system. A reinforcement learning scheme in discrete-time is proposed for the adaptive critic NN deadzone compensator, where the learning is performed based on a certain performance measure, which is supplied from a critic. The adaptive generating NN rejects the errors induced by the deadzone whereas a ...