Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Physical Sciences and Mathematics

Electrical and Computer Engineering Faculty Research & Creative Works

Nonlinear control theory

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

An Online Approximator-Based Fault Detection Framework For Nonlinear Discrete-Time Systems, Balaje T. Thumati, Jagannathan Sarangapani Jan 2007

An Online Approximator-Based Fault Detection Framework For Nonlinear Discrete-Time Systems, Balaje T. Thumati, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a fault detection scheme is developed for nonlinear discrete time systems. The changes in the system dynamics due to incipient failures are modeled as a nonlinear function of state and input variables while the time profile of the failures is assumed to be exponentially developing. The fault is detected by monitoring the system and is approximated by using online approximators. A stable adaptation law in discrete-time is developed in order to characterize the faults. The robustness of the diagnosis scheme is shown by extensive mathematical analysis and simulation results.


Reinforcement Learning-Based Output Feedback Control Of Nonlinear Systems With Input Constraints, Pingan He, Jagannathan Sarangapani Feb 2005

Reinforcement Learning-Based Output Feedback Control Of Nonlinear Systems With Input Constraints, Pingan He, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A novel neural network (NN) -based output feedback controller with magnitude constraints is designed to deliver a desired tracking performance for a class of multi-input-multi-output (MIMO) discrete-time strict feedback nonlinear systems. Reinforcement learning in discrete time is proposed for the output feedback controller, which uses three NN: 1) a NN observer to estimate the system states with the input-output data; 2) a critic NN to approximate certain strategic utility function; and 3) an action NN to minimize both the strategic utility function and the unknown dynamics estimation errors. The magnitude constraints are manifested as saturation nonlinearities in the output feedback …


Neuro Emission Controller For Minimizing Cyclic Dispersion In Spark Ignition Engines, Pingan He, Jagannathan Sarangapani Jan 2003

Neuro Emission Controller For Minimizing Cyclic Dispersion In Spark Ignition Engines, Pingan He, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A novel neural network (NN) controller is developed to control spark ignition (SI) engines at extreme lean conditions. The purpose of neurocontroller is to reduce the cyclic dispersion at lean operation even when the engine dynamics are unknown. The stability analysis of the closed-loop control system is given and the boundedness of all signals is ensured. Results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller. The neuro controller can also be extended to minimize engine emissions with high EGR levels, where similar complex cyclic dynamics are observed. Further, the proposed approach can be applied to control …