Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Physical Sciences and Mathematics

Electrical and Computer Engineering Faculty Research & Creative Works

Distributed Power Control

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Adaptive Power Control Protocol With Hardware Implementation For Wireless Sensor And Rfid Reader Networks, Kainan Cha, Jagannathan Sarangapani, David Pommerenke Jan 2007

Adaptive Power Control Protocol With Hardware Implementation For Wireless Sensor And Rfid Reader Networks, Kainan Cha, Jagannathan Sarangapani, David Pommerenke

Electrical and Computer Engineering Faculty Research & Creative Works

The development and deployment of radio frequency identification (RFID) systems render a novel distributed sensor network which enhances visibility into manufacturing processes. In RFID systems, the detection range and read rates will suffer from interference among high-power reading devices. This problem grows severely and degrades system performance in dense RFID networks. Consequently, medium access protocols (MAC) protocols are needed for such networks to assess and provide access to the channel so that tags can be read accurately. In this paper, we investigate a suite of feasible power control schemes to ensure overall coverage area of the system while maintaining a …


Distributed Power Control For Cellular Networks In The Presence Of Channel Uncertainties, Maciej Jan Zawodniok, Q. Shang, Jagannathan Sarangapani Jan 2006

Distributed Power Control For Cellular Networks In The Presence Of Channel Uncertainties, Maciej Jan Zawodniok, Q. Shang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel distributed power control (DPC) scheme for cellular network in the presence of radio channel uncertainties such as path loss, shadowing, and Rayleigh fading is presented. Since these uncertainties can attenuate the received signal strength and can cause variations in the received Signal-to-Interference ratio (SIR), a new DPC scheme, which can estimate the slowly varying channel uncertainty, is proposed so that a target SIR at the receiver can be maintained. Further, the standard assumption of a constant interference during a link's power update used in other works in the literature is relaxed. A CDMA-based cellular network …