Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Computer Sciences

Lyapunov Method

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Neural Network Control Of Mobile Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks Apr 2009

Neural Network Control Of Mobile Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, an asymptotically stable (AS) combined kinematic/torque control law is developed for leader-follower-based formation control using backstepping in order to accommodate the complete dynamics of the robots and the formation, and a neural network (NN) is introduced along with robust integral of the sign of the error feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are as and that the NN weights are bounded as opposed to uniformly ultimately bounded stability which is typical with ...


Neural Network Output Feedback Control Of A Quadrotor Uav, Jagannathan Sarangapani, Travis Alan Dierks Dec 2008

Neural Network Output Feedback Control Of A Quadrotor Uav, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

A neural network (NN) based output feedback controller for a quadrotor unmanned aerial vehicle (UAV) is proposed. The NNs are utilized in the observer and for generating virtual and actual control inputs, respectively, where the NNs learn the nonlinear dynamics of the UAV online including uncertain nonlinear terms like aerodynamic friction and blade flapping. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semi-globally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional ...


Neural Network Control Of Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks Jan 2007

Neural Network Control Of Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as ...


Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani Jan 2007

Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation. In the online NN reinforcement learning method, one NN is designated as the critic NN, which approximates the long-term cost function by assuming that the states of the nonlinear systems is available for measurement. An action NN is employed to derive an optimal control signal to track a desired system trajectory while minimizing the cost function. Online updating weight tuning schemes for these two NNs are also derived. By using the Lyapunov ...