Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Computer Sciences

Algorithms

Singapore Management University

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Probabilistic Inference Based Message-Passing For Resource Constrained Dcops, Supriyo Ghosh, Akshat Kumar, Pradeep Varakantham Jul 2015

Probabilistic Inference Based Message-Passing For Resource Constrained Dcops, Supriyo Ghosh, Akshat Kumar, Pradeep Varakantham

Research Collection School Of Information Systems

Distributed constraint optimization (DCOP) is an important framework for coordinated multiagent decision making. We address a practically useful variant of DCOP, called resource-constrained DCOP (RC-DCOP), which takes into account agents’ consumption of shared limited resources. We present a promising new class of algorithm for RC-DCOPs by translating the underlying co- ordination problem to probabilistic inference. Using inference techniques such as expectation- maximization and convex optimization machinery, we develop a novel convergent message-passing algorithm for RC-DCOPs. Experiments on standard benchmarks show that our approach provides better quality than previous best DCOP algorithms and has much lower failure rate. Comparisons against an ...


Tesla: An Energy-Saving Agent That Leverages Schedule Flexibility, Jun Young Kwak, Pradeep Varakantham, Rajiv Maheswaran, Burcin Becerik-Gerber, Milind Tambe May 2013

Tesla: An Energy-Saving Agent That Leverages Schedule Flexibility, Jun Young Kwak, Pradeep Varakantham, Rajiv Maheswaran, Burcin Becerik-Gerber, Milind Tambe

Research Collection School Of Information Systems

This innovative application paper presents TESLA, an agent-based application for optimizing the energy use in commercial buildings. TESLA’s key insight is that adding flexibility to event/meeting schedules can lead to significant energy savings. TESLA provides three key contributions: (i) three online scheduling algorithms that consider flexibility of people’s preferences for energyefficient scheduling of incrementally/dynamically arriving meetings and events; (ii) an algorithm to effectively identify key meetings that lead to significant energy savings by adjusting their flexibility; and (iii) surveys of real users that indicate that TESLA’s assumptions exist in practice. TESLA was evaluated on data ...