Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Tuning Tabu Search Strategies Via Visual Diagnosis, Steven Halim, Hoong Chuin Lau Dec 2007

Tuning Tabu Search Strategies Via Visual Diagnosis, Steven Halim, Hoong Chuin Lau

Research Collection School Of Information Systems

While designing working metaheuristics can be straightforward, tuning them to solve the underlying combinatorial optimization problem well can be tricky. Several tuning methods have been proposed but they do not address the new aspect of our proposed classification of the metaheuristic tuning problem: tuning search strategies. We propose a tuning methodology based on Visual Diagnosis and a generic tool called Visualizer for Metaheuristics Development Framework(V-MDF) to address specifically the problem of tuning search (particularly Tabu Search) strategies. Under V-MDF, we propose the use of a Distance Radar visualizer where the human and computer can collaborate to diagnose the occurrence ...


Predictive Congestion Control Protocol For Wireless Sensor Networks, Maciej Jan Zawodniok, Jagannathan Sarangapani Nov 2007

Predictive Congestion Control Protocol For Wireless Sensor Networks, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Available congestion control schemes, for example transport control protocol (TCP), when applied to wireless networks, result in a large number of packet drops, unfair scenarios and low throughputs with a significant amount of wasted energy due to retransmissions. To fully utilize the hop by hop feedback information, this paper presents a novel, decentralized, predictive congestion control (DPCC) for wireless sensor networks (WSN). The DPCC consists of an adaptive flow and adaptive back-off interval selection schemes that work in concert with energy efficient, distributed power control (DPC). The DPCC detects the onset of congestion using queue utilization and the embedded channel ...


Effects Of Electromagnetic Interference On Control Area Network Performance, Fei Ren, Y. Rosa Zheng, Maciej Jan Zawodniok, Jagannathan Sarangapani Nov 2007

Effects Of Electromagnetic Interference On Control Area Network Performance, Fei Ren, Y. Rosa Zheng, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, the effects of electromagnetic interference (EMI) on control area network (CAN) communications are investigated by hardware experiments. Distinct CAN bit rates, communication cables, and networks are used to test effects of EMI on CAN bus. Waveforms of CAN data frames in EMI environment are observed and analyzed for figuring out details of effects. Experiments show that the EMI pulses frequently encountered in automobile and off-road machinery can cause the reduction of bit rates and errors in high-speed CAN communications. Replacing traditional unshielded parallel communication cables with shielded communication cables is proved to be an effective method of ...


Designing The Market Game For A Commodity Trading Simulation, Shih-Fen Cheng Nov 2007

Designing The Market Game For A Commodity Trading Simulation, Shih-Fen Cheng

Research Collection School Of Information Systems

In this paper, we propose to design a market game that (a) can be used in modeling and studying commodity trading scenarios, and (b) can be used in capturing human traders' behaviors. Specifically, we demonstrate the usefulness of this commodity trading game in a single-commodity futures trading scenario. A pilot experiment was run with a mixture of human traders and an autonomous agent that emulates the aggregatedmarket condition, with the assumption that this autonomous agent would hint each of its action through a public announcement. We show that the information collected from this simulation can be used to extract the ...


Multi-Period Combinatorial Auction Mechanism For Distributed Resource Allocation And Scheduling, Hoong Chuin Lau, Shih-Fen Cheng, Thin Yin Leong, Jong Han Park, Zhengyi Zhao Nov 2007

Multi-Period Combinatorial Auction Mechanism For Distributed Resource Allocation And Scheduling, Hoong Chuin Lau, Shih-Fen Cheng, Thin Yin Leong, Jong Han Park, Zhengyi Zhao

Research Collection School Of Information Systems

We consider the problem of resource allocation and scheduling where information and decisions are decentralized, and our goal is to propose a market mechanism that allows resources from a central resource pool to be allocated to distributed decision makers (agents) that seek to optimize their respective scheduling goals. We propose a generic combinatorial auction mechanism that allows agents to competitively bid for the resources needed in a multi-period setting, regardless of the respective scheduling problem faced by the agent, and show how agents can design optimal bidding strategies to respond to price adjustment strategies from the auctioneer. We apply our ...


The Price Of Stability In Selfish Scheduling Games, Lucas Agussurja, Hoong Chuin Lau Nov 2007

The Price Of Stability In Selfish Scheduling Games, Lucas Agussurja, Hoong Chuin Lau

Research Collection School Of Information Systems

Game theory has gained popularity as an approach to analysing and understanding distributed systems with selfinterested agents. Central to game theory is the concept of Nash equilibrium as a stable state (solution) of the system, which comes with a price - the loss in efficiency. The quantification of the efficiency loss is one of the main research concerns. In this paper, we study the quality and computational characteristic of the best Nash equilibrium in two selfish scheduling models: the congestion model and the sequencing model. In particular, we present the following results: (1) In the congestion model: first, the best Nash ...


Neural Network Based Decentralized Controls Of Large Scale Power Systems, Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes Oct 2007

Neural Network Based Decentralized Controls Of Large Scale Power Systems, Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a suite of neural network (NN) based decentralized controller designs for large scale power systems' generators, one is for the excitation control and the other is for the steam valve control. Though the control inputs are calculated using local signals, the transient and overall system stability can be guaranteed. NNs are used to approximate the unknown and/or imprecise dynamics of the local power system dynamics and the inter-connection terms, thus the requirements for exact system parameters are relaxed. Simulation studies with a three-machine power system demonstrate the effectiveness of the proposed controller designs.


Energy-Efficient Hybrid Key Management Protocol For Wireless Sensor Networks, Timothy J. Landstra, Maciej Jan Zawodniok, Jagannathan Sarangapani Oct 2007

Energy-Efficient Hybrid Key Management Protocol For Wireless Sensor Networks, Timothy J. Landstra, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, we propose a subnetwork key management strategy in which the heterogeneous security requirements of a wireless sensor network are considered to provide differing levels of security with minimum communication overhead. Additionally, it allows the dynamic creation of high security subnetworks within the wireless sensor network and provides subnetworks with a mechanism for dynamically creating a secure key using a novel and dynamic group key management protocol. The proposed energy-efficient protocol utilizes a combination of pre-deployed group keys and initial trustworthiness of nodes to create a level of trust between neighbors in the network. This trust is later ...


Comparisons Of An Adaptive Neural Network Based Controller And An Optimized Conventional Power System Stabilizer, Wenxin Liu, Ganesh K. Venayagamoorthy, Jagannathan Sarangapani, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes Oct 2007

Comparisons Of An Adaptive Neural Network Based Controller And An Optimized Conventional Power System Stabilizer, Wenxin Liu, Ganesh K. Venayagamoorthy, Jagannathan Sarangapani, Donald C. Wunsch, Mariesa Crow, Li Liu, David A. Cartes

Electrical and Computer Engineering Faculty Research & Creative Works

Power system stabilizers are widely used to damp out the low frequency oscillations in power systems. In power system control literature, there is a lack of stability analysis for proposed controller designs. This paper proposes a Neural Network (NN) based stabilizing controller design based on a sixth order single machine infinite bus power system model. The NN is used to compensate the complex nonlinear dynamics of power system. To speed up the learning process, an adaptive signal is introduced to the NN's weights updating rule. The NN can be directly used online without offline training process. Magnitude constraint of ...


Robust Local Search And Its Application To Generating Robust Schedules, Hoong Chuin Lau, Fei Xiao, Thomas Ou Sep 2007

Robust Local Search And Its Application To Generating Robust Schedules, Hoong Chuin Lau, Fei Xiao, Thomas Ou

Research Collection School Of Information Systems

In this paper, we propose an extended local search framework to solve combinatorial optimization problems with data uncertainty. Our approach represents a major departure from scenario-based or stochastic programming approaches often used to tackle uncertainty. Given a value 0 < ? 1, we are interested to know what the robust objective value is, i.e. the optimal value if we allow an chance of not meeting it, assuming that certain data values are defined on bounded random variables. We show how a standard local search or metaheuristic routine can be extended to efficiently construct a decision rule with such guarantee, albeit heuristically. We demonstrate its practical applicability on the Resource Constrained Project Scheduling Problem with minimal and maximal time lags (RCPSP/max) taking into consideration activity duration uncertainty. Experiments show that, partial order schedules can be constructed that are robust in our sense without the need for a large planned horizon (due date), which improves upon the work proposed by Policella et al. 2004.


Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jul 2007

Reinforcement Learning Based Output-Feedback Control Of Nonlinear Nonstrict Feedback Discrete-Time Systems With Application To Engines, Peter Shih, Jonathan B. Vance, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule ...


Online Reinforcement Learning-Based Neural Network Controller Design For Affine Nonlinear Discrete-Time Systems, Qinmin Yang, Jagannathan Sarangapani Jul 2007

Online Reinforcement Learning-Based Neural Network Controller Design For Affine Nonlinear Discrete-Time Systems, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for general multi-input and multi- output affine unknown nonlinear discrete-time systems in the presence of bounded disturbances. Adaptive critic designs consist of two entities, an action network that produces optimal solution and a critic that evaluates the performance of the action network. The critic is termed adaptive as it adapts itself to output the optimal cost-to-go function and the action network is adapted simultaneously based on the information from the critic. In our online learning method, one NN is designated as ...


Generating Job Schedules For Vessel Operations In A Container Terminal, Thin Yin Leong, Hoong Chuin Lau Jul 2007

Generating Job Schedules For Vessel Operations In A Container Terminal, Thin Yin Leong, Hoong Chuin Lau

Research Collection School Of Information Systems

No abstract provided.


Designing An Experimental Gaming Platform For Trading Grid Resources, Danny Oh, Shih-Fen Cheng, Dan Ma, Ravi Bapna Jun 2007

Designing An Experimental Gaming Platform For Trading Grid Resources, Danny Oh, Shih-Fen Cheng, Dan Ma, Ravi Bapna

Research Collection School Of Information Systems

This paper describes our current work in designing an experimental gaming platform for simulating the trading of grid resources. The open platform allows researchers in grid economics to experiment with different market structures and pricing models. We would be using a design science approach in the implementation. Key design considerations and an overview of the functional design of the platform are presented and discussed.


Efficient Algorithms For Machine Scheduling Problems With Earliness And Tardiness Penalties, Guang Feng, Hoong Chuin Lau Mar 2007

Efficient Algorithms For Machine Scheduling Problems With Earliness And Tardiness Penalties, Guang Feng, Hoong Chuin Lau

Research Collection School Of Information Systems

In this paper, we study the multi-machine scheduling problem with earliness and tardiness penalties and sequence dependent setup times. This problem can be decomposed into two subproblems—sequencing and timetabling. Sequencing focuses on assigning each job to a fixed machine and determine the job sequence on each machine. We call such assignment a semi-schedule. Timetabling focuses on finding an executable schedule from the semi-schedule via idle-time insertion. Sequencing is strongly NP-hard in general. Although timetabling is polynomial-time solvable, it can become a computational bottleneck if the procedure is executed many times within a larger framework. This paper makes two contributions ...


Towards Efficient Planning For Real World Partially Observable Domains, Pradeep R. Varakantham Feb 2007

Towards Efficient Planning For Real World Partially Observable Domains, Pradeep R. Varakantham

Research Collection School Of Information Systems

My research goal is to build large-scale intelligent systems (both single- and multi-agent) that reason with uncertainty in complex, real-world environments. I foresee an integration of such systems in many critical facets of human life ranging from intelligent assistants in hospitals to offices, from rescue agents in large scale disaster response to sensor agents tracking weather phenomena in earth observing sensor webs, and others. In my thesis, I have taken steps towards achieving this goal in the context of systems that operate in partially observable domains that also have transitional (non-deterministic outcomes to actions) uncertainty. Given this uncertainty, Partially Observable ...


Development Of Integrated Process Simulation System Model For Spent Fuel Treatment Facility (Sftf) Design, Yitung Chen, Sean Hsieh Jan 2007

Development Of Integrated Process Simulation System Model For Spent Fuel Treatment Facility (Sftf) Design, Yitung Chen, Sean Hsieh

Separations Campaign (TRP)

The major objectives will lead to a creation of framework that combines all the strengths of AMUSE’s complicated calculations, well-established commercial system process package and ISOPro’s flexible parameter optimization modules. Development of the process simulation code can be done using the solvent extraction process at Argonne National Laboratory in collaboration with the research team from Mechanical Engineering Department at UNLV.

Research accomplishments:

  • Integrated the ASPEN-Plus process model with the ISOPro system engineering modeling package, developed by the UNLV team.
  • Tested the simplified system process integration using the ISOPro package.
  • Generated complete version of the ISOPro package user manual ...


Online Reinforcement Learning Control Of Unknown Nonaffine Nonlinear Discrete Time Systems, Qinmin Yang, Jagannathan Sarangapani Jan 2007

Online Reinforcement Learning Control Of Unknown Nonaffine Nonlinear Discrete Time Systems, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel neural network (NN) based online reinforcement learning controller is designed for nonaffine nonlinear discrete-time systems with bounded disturbances. The nonaffine systems are represented by nonlinear auto regressive moving average with exogenous input (NARMAX) model with unknown nonlinear functions. An equivalent affine-like representation for the tracking error dynamics is developed first from the original nonaffine system. Subsequently, a reinforcement learning-based neural network (NN) controller is proposed for the affine-like nonlinear error dynamic system. The control scheme consists of two NNs. One NN is designated as the critic, which approximates a predefined long-term cost function, whereas an ...


Two Neural Network Based Decentralized Controller Designs For Large Scale Power Systems, Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Mariesa Crow, David A. Cartes Jan 2007

Two Neural Network Based Decentralized Controller Designs For Large Scale Power Systems, Wenxin Liu, Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. Wunsch, Mariesa Crow, David A. Cartes

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents two neural network (NN) based decentralized controller designs for large scale power systems' generators, one is for the excitation control and the other is for the steam valve control. Though the control signals are calculated using local signals only, the transient and overall system stabilities can be guaranteed. NNs are used to approximate the unknown and/or imprecise dynamics of the local power system and the interconnection terms, thus the requirements for exact system parameters are released. Simulation studies with a three machine power system demonstrate the effectiveness of the proposed controller designs.


Neural Network Control Of Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks Jan 2007

Neural Network Control Of Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as ...


Design And Innovative Methodologies In A Semantic Framework, Rui Fernandes, Ian R. Grosse, Sundar Krishnamurty, Jack C. Wileden Jan 2007

Design And Innovative Methodologies In A Semantic Framework, Rui Fernandes, Ian R. Grosse, Sundar Krishnamurty, Jack C. Wileden

Center for e-Design Proceedings

Significant expenditure and effort is devoted to the never ending search for reduced product development lifecycle time and increased efficiency. The development of Semantic Web technologies promises a future where knowledge interchange is done seamlessly in open distributed environments. This paper illustrates how Semantic Web technologies in their current state of development can be effectively used to deploy an infrastructure supporting innovation principles and the engineering design processes. A mechanical design was chosen to model the initial phase of a design project using semantic ontologies. This included a set of design requirements, creating a functional model, and making use of ...


Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani Jan 2007

Online Reinforcement Learning Neural Network Controller Design For Nanomanipulation, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation. In the online NN reinforcement learning method, one NN is designated as the critic NN, which approximates the long-term cost function by assuming that the states of the nonlinear systems is available for measurement. An action NN is employed to derive an optimal control signal to track a desired system trajectory while minimizing the cost function. Online updating weight tuning schemes for these two NNs are also derived. By using the Lyapunov ...


Neural Network Controller Development And Implementation For Spark Ignition Engines With High Egr Levels, Jonathan B. Vance, Atmika Singh, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jan 2007

Neural Network Controller Development And Implementation For Spark Ignition Engines With High Egr Levels, Jonathan B. Vance, Atmika Singh, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10% -25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A ...


Adaptive Power Control Protocol With Hardware Implementation For Wireless Sensor And Rfid Reader Networks, Kainan Cha, Jagannathan Sarangapani, David Pommerenke Jan 2007

Adaptive Power Control Protocol With Hardware Implementation For Wireless Sensor And Rfid Reader Networks, Kainan Cha, Jagannathan Sarangapani, David Pommerenke

Electrical and Computer Engineering Faculty Research & Creative Works

The development and deployment of radio frequency identification (RFID) systems render a novel distributed sensor network which enhances visibility into manufacturing processes. In RFID systems, the detection range and read rates will suffer from interference among high-power reading devices. This problem grows severely and degrades system performance in dense RFID networks. Consequently, medium access protocols (MAC) protocols are needed for such networks to assess and provide access to the channel so that tags can be read accurately. In this paper, we investigate a suite of feasible power control schemes to ensure overall coverage area of the system while maintaining a ...


Spatial Diversity In Signal Strength Based Wlan Location Determination Systems, Anil Ramachandran, Jagannathan Sarangapani Jan 2007

Spatial Diversity In Signal Strength Based Wlan Location Determination Systems, Anil Ramachandran, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Literature indicates that spatial diversity can be utilized to compensate channel uncertainties such as multipath fading. Therefore, in this paper, spatial diversity is exploited for locating stationary and mobile objects in the indoor environment. First, space diversity technique is introduced for small scale motion and temporal variation compensation of received signal strength and it is demonstrated analytically that it enhances location accuracy. Small scale motion refers to movements of the transmitter and/or the receiver of the order of sub-wavelengths while temporal effects refer to environmental variations with time. A novel metric is introduced for selection combining in order to ...


An Online Approximator-Based Fault Detection Framework For Nonlinear Discrete-Time Systems, Balaje T. Thumati, Jagannathan Sarangapani Jan 2007

An Online Approximator-Based Fault Detection Framework For Nonlinear Discrete-Time Systems, Balaje T. Thumati, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a fault detection scheme is developed for nonlinear discrete time systems. The changes in the system dynamics due to incipient failures are modeled as a nonlinear function of state and input variables while the time profile of the failures is assumed to be exponentially developing. The fault is detected by monitoring the system and is approximated by using online approximators. A stable adaptation law in discrete-time is developed in order to characterize the faults. The robustness of the diagnosis scheme is shown by extensive mathematical analysis and simulation results.


Near Optimal Output-Feedback Control Of Nonlinear Discrete-Time Systems In Nonstrict Feedback Form With Application To Engines, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Jan 2007

Near Optimal Output-Feedback Control Of Nonlinear Discrete-Time Systems In Nonstrict Feedback Form With Application To Engines, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex nonlinear discrete-time systems in the presence of bounded and unknown disturbances. The controller includes an observer for estimating states and the outputs, critic, and two action NNs for generating virtual, and actual control inputs. The critic approximates certain strategic utility function and the action NNs are used to minimize both the strategic utility function and their outputs. All NN weights adapt online towards minimization of a performance index, utilizing gradient-descent based rule ...


Route Aware Predictive Congestion Control Protocol For Wireless Sensor Networks, Carl Larsen, Maciej Jan Zawodniok, Jagannathan Sarangapani Jan 2007

Route Aware Predictive Congestion Control Protocol For Wireless Sensor Networks, Carl Larsen, Maciej Jan Zawodniok, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Congestion in wireless sensor networks (WSN) may lead to packet losses or delayed delivery of important information rendering the WSN-based monitoring or control system useless. In this paper a routing-aware predictive congestion control (RPCC) yet decentralized scheme for WSN is presented that uses a combination of a hop by hop congestion control mechanism to maintain desired level of buffer occupancy, and a dynamic routing scheme that works in concert with the congestion control mechanism to forward the packets through less congested nodes. The proposed adaptive approach restricts the incoming traffic thus preventing buffer overflow while maintaining the rate through an ...


Adaptive Neural Network Based Stabilizing Controller Design For Single Machine Infinite Bus Power Systems, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch, David A. Cartes, Jagannathan Sarangapani, Mariesa Crow Jan 2007

Adaptive Neural Network Based Stabilizing Controller Design For Single Machine Infinite Bus Power Systems, Wenxin Liu, Ganesh K. Venayagamoorthy, Donald C. Wunsch, David A. Cartes, Jagannathan Sarangapani, Mariesa Crow

Engineering Management and Systems Engineering Faculty Research & Creative Works

Power system stabilizers are widely used to generate supplementary control signals for the excitation system in order to damp out the low frequency oscillations. In power system control literature, the performances of the proposed controllers were mostly demonstrated using simulation results without any rigorous stability analysis. This paper proposes a stabilizing neural network (NN) controller based on a sixth order single machine infinite bus power system model. The NN is used to approximate the complex nonlinear dynamics of power system. Unlike the other indirect adaptive NN control schemes, there is no offline training process and the NN can be directly ...


Iterated Weaker-Than-Weak Dominance, Shih-Fen Cheng, Michael P. Wellman Jan 2007

Iterated Weaker-Than-Weak Dominance, Shih-Fen Cheng, Michael P. Wellman

Research Collection School Of Information Systems

We introduce a weakening of standard gametheoretic δ-dominance conditions, called dominance, which enables more aggressive pruning of candidate strategies at the cost of solution accuracy. Equilibria of a game obtained by eliminating a δ-dominated strategy are guaranteed to be approximate equilibria of the original game, with degree of approximation bounded by the dominance parameter. We can apply elimination of δ-dominated strategies iteratively, but the for which a strategy may be eliminated depends on prior eliminations. We discuss implications of this order independence, and propose greedy heuristics for determining a sequence of eliminations to reduce the game as far as possible ...