Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Artificial Intelligence and Robotics

Game theory

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Direct: A Scalable Approach For Route Guidance In Selfish Orienteering Problems, Pradeep Varakantham, Hala Mostafa, Na Fu, Hoong Chuin Lau May 2015

Direct: A Scalable Approach For Route Guidance In Selfish Orienteering Problems, Pradeep Varakantham, Hala Mostafa, Na Fu, Hoong Chuin Lau

Research Collection School Of Information Systems

We address the problem of crowd congestion at venues like theme parks, museums and world expos by providing route guidance to multiple selfish users (with budget constraints) moving through the venue simultaneously. To represent these settings, we introduce the Selfish Orienteering Problem (SeOP) that combines two well studied problems from literature, namely Orienteering Problem (OP) and Selfish Routing (SR). OP is a single agent routing problem where the goal is to minimize latency (or maximize reward) in traversing a subset of nodes while respecting budget constraints. SR is a game between selfish agents looking for minimum latency routes from source ...


Streets: Game-Theoretic Traffic Patrolling With Exploration And Exploitation, Matthew Brown, Sandhya Saisubramanian, Pradeep Varakantham, Milind Tambe Jul 2014

Streets: Game-Theoretic Traffic Patrolling With Exploration And Exploitation, Matthew Brown, Sandhya Saisubramanian, Pradeep Varakantham, Milind Tambe

Research Collection School Of Information Systems

To dissuade reckless driving and mitigate accidents, cities deploy resources to patrol roads. In this paper, we present STREETS, an application developed for the city of Singapore, which models the problem of computing randomized traffic patrol strategies as a defenderattacker Stackelberg game. Previous work on Stackelberg security games has focused extensively on counterterrorism settings. STREETS moves beyond counterterrorism and represents the first use of Stackelberg games for traffic patrolling, in the process providing a novel algorithm for solving such games that addresses three major challenges in modeling and scale-up. First, there exists a high degree of unpredictability in travel times ...