Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

A Multi-Objective Facility Location Model For Closed-Loop Supply Chain Network Under Uncertain Demand And Return, Saman Hassanzadeh Amin, Guoqing Zhang Mar 2013

A Multi-Objective Facility Location Model For Closed-Loop Supply Chain Network Under Uncertain Demand And Return, Saman Hassanzadeh Amin, Guoqing Zhang

Mechanical, Automotive & Materials Engineering Publications

A closed-loop supply chain (CLSC) network consists of both forward and reverse supply chains. In this paper, a CLSC network is investigated which includes multiple plants, collection centres, demand markets, and products. To this aim, a mixed-integer linear programming model is proposed that minimizes the total cost. Besides, two test problems are examined. The model is extended to consider environmental factors by weighed sums and ε-constraint methods. In addition, we investigate the impact of demand and return uncertainties on the network configuration by stochastic programming (scenario-based). Computational results show that the model can handle demand and return uncertainties, simultaneously.


A Proposed Mathematical Model For Closed-Loop Network Configuration Based On Product Life Cycle, Saman Hassanzadeh Amin, Guoqing Zhang Jan 2012

A Proposed Mathematical Model For Closed-Loop Network Configuration Based On Product Life Cycle, Saman Hassanzadeh Amin, Guoqing Zhang

Mechanical, Automotive & Materials Engineering Publications

Products may be returned over their life cycle. Industrial experiences show that there are three main return–recovery pairs. Commercial returns are repaired. End-of-use returns often are remanufactured. In addition, end-of-life returns are recycled. However, up to now, no optimization model is proposed for closed-loop configuration based on three return–recovery pairs. The repaired and remanufactured products can be sold in the same or secondary market. In this paper, we design and configure a general closed-loop supply chain network based on product life cycle. The network includes a manufacturer, collection, repair, disassembly, recycling, and disposal sites. The returned products are collected in …


Optimal Production Planning For A Multi-Product Closed Loop System With Uncertain Demand And Return, Jianmai Shi, Guoqing Zhang, Jichang Sha Mar 2011

Optimal Production Planning For A Multi-Product Closed Loop System With Uncertain Demand And Return, Jianmai Shi, Guoqing Zhang, Jichang Sha

Mechanical, Automotive & Materials Engineering Publications

We study the production planning problem for a multi-product closed loop system, in which the manufacturer has two channels for supplying products: producing brand-new products and remanufacturing returns into as-new ones. In the remanufacturing process, used products are bought back and remanufactured into as-new products which are sold together with the brand-new ones. The demands for all the products are uncertain, and their returns are uncertain and price-sensitive. The problem is to maximize the manufacturer's expected profit by jointly determining the production quantities of brand-new products, the quantities of remanufactured products and the acquisition prices of the used products, subject …


Coordinating Production And Recycling Decisions With Stochastic Demand And Return, Jianmai Shi, Guoqing Zhang, Jichang Sha, Saman Hassanzadeh Amin Dec 2010

Coordinating Production And Recycling Decisions With Stochastic Demand And Return, Jianmai Shi, Guoqing Zhang, Jichang Sha, Saman Hassanzadeh Amin

Mechanical, Automotive & Materials Engineering Publications

In this paper, the joint production and recycling problem is investigated for a hybrid manufacturing and remanufacturing system where brand-new products are produced in the manufacturing plant and recycled products are remanufactured into as-new products in the remanufacturing facility. Both the brand-new products and remanufactured products are used to satisfy customer demands. Returns of used products that are recycled from customers are assumed to be stochastic and nonlinearly price-dependent. A mathematical model is proposed to maximize the overall profit of the system through simultaneously optimizing the production and recycling decisions, subject to two capacity constraints — the manufacturing capacity and …