Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Hierarchical Multiagent Reinforcement Learning For Maritime Traffic Management, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau May 2020

Hierarchical Multiagent Reinforcement Learning For Maritime Traffic Management, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Increasing global maritime traffic coupled with rapid digitization and automation in shipping mandate developing next generation maritime traffic management systems to mitigate congestion, increase safety of navigation, and avoid collisions in busy and geographically constrained ports (such as Singapore's). To achieve these objectives, we model the maritime traffic as a large multiagent system with individual vessels as agents, and VTS (Vessel Traffic Service) authority as a regulatory agent. We develop a hierarchical reinforcement learning approach where vessels first select a high level action based on the underlying traffic flow, and then select the low level action that determines their future …


Dual Formulations For Optimizing Dec-Pomdp Controllers, Akshat Kumar, Hala Mostafa, Shlomo Zilberstein Jun 2016

Dual Formulations For Optimizing Dec-Pomdp Controllers, Akshat Kumar, Hala Mostafa, Shlomo Zilberstein

Research Collection School Of Computing and Information Systems

Decentralized POMDP is an expressive model for multi-agent planning. Finite-state controllers (FSCs)---often used to represent policies for infinite-horizon problems---offer a compact, simple-to-execute policy representation. We exploit novel connections between optimizing decentralized FSCs and the dual linear program for MDPs. Consequently, we describe a dual mixed integer linear program (MIP) for optimizing deterministic FSCs. We exploit the Dec-POMDP structure to devise a compact MIP and formulate constraints that result in policies executable in partially-observable decentralized settings. We show analytically that the dual formulation can also be exploited within the expectation maximization (EM) framework to optimize stochastic FSCs. The resulting EM algorithm …


Simultaneous Optimization And Sampling Of Agent Trajectories Over A Network, Hala Mostafa, Akshat Kumar, Hoong Chuin Lau May 2016

Simultaneous Optimization And Sampling Of Agent Trajectories Over A Network, Hala Mostafa, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We study the problem of optimizing the trajectories of agents moving over a network given their preferences over which nodes to visit subject to operational constraints on the network. In our running example, a theme park manager optimizes which attractions to include in a day-pass to maximize the pass’s appeal to visitors while keeping operational costs within budget. The first challenge in this combinatorial optimization problem is that it involves quantities (expected visit frequencies of each attraction) that cannot be expressed analytically, for which we use the Sample Average Approximation. The second challenge is that while sampling is typically done …


Dynamic Multi-Linked Negotiations In Multi-Echelon Production Scheduling Networks, Hoong Chuin Lau, Guan Li Soh, Wee Chong Wan Dec 2006

Dynamic Multi-Linked Negotiations In Multi-Echelon Production Scheduling Networks, Hoong Chuin Lau, Guan Li Soh, Wee Chong Wan

Research Collection School Of Computing and Information Systems

In this paper, we are concerned with scheduling resources in a multi-tier production/logistics system for multi-indenture goods. Unlike classical production scheduling problems, the problem we study is concerned with local utilities which are private. We present an agent model and investigate an efficient scheme for handling multi-linked agent negotiations. With this scheme we attempt to overcome the drawbacks of sequential negotiations and negotiation parameter settings. Our approach is based on embedding a credit-based negotiation protocol within a local search scheduling algorithm. We demonstrate the computational efficiency and effectiveness of the approach in solving a real-life dynamic production scheduling problem which …