Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 242

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Zone Path Construction (Zac) Based Approaches For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet Sep 2020

Zone Path Construction (Zac) Based Approaches For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet

Research Collection School Of Computing and Information Systems

Real-time ridesharing systems such as UberPool, Lyft Line, GrabShare have become hugely popular as they reduce the costs for customers, improve per trip revenue for drivers and reduce traffic on the roads by grouping customers with similar itineraries. The key challenge in these systems is to group the "right" requests to travel together in the "right" available vehicles in real-time, so that the objective (e.g., requests served, revenue or delay) is optimized. This challenge has been addressed in existing work by: (i) generating as many relevant feasible (with respect to the available delay for customers) combinations of requests as possible …


Hierarchical Multiagent Reinforcement Learning For Maritime Traffic Management, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau May 2020

Hierarchical Multiagent Reinforcement Learning For Maritime Traffic Management, Arambam James Singh, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Increasing global maritime traffic coupled with rapid digitization and automation in shipping mandate developing next generation maritime traffic management systems to mitigate congestion, increase safety of navigation, and avoid collisions in busy and geographically constrained ports (such as Singapore's). To achieve these objectives, we model the maritime traffic as a large multiagent system with individual vessels as agents, and VTS (Vessel Traffic Service) authority as a regulatory agent. We develop a hierarchical reinforcement learning approach where vessels first select a high level action based on the underlying traffic flow, and then select the low level action that determines their future …


Multi-Level Fine-Scaled Sentiment Sensing With Ambivalence Handling, Zhaoxia Wang, Seng-Beng Ho, Erik Cambria Feb 2020

Multi-Level Fine-Scaled Sentiment Sensing With Ambivalence Handling, Zhaoxia Wang, Seng-Beng Ho, Erik Cambria

Research Collection School Of Computing and Information Systems

Social media represent a rich source of information, such as critiques, feedback, and other opinions posted online by Internet users. Such information is typically a good reflection of users’ sentiments and attitudes towards various services, topics, or products. Sentiment analysis has become an increasingly important natural language processing (NLP) task to help users make sense of what is happening in the Internet blogosphere and it can be useful for companies as well as public organizations. However, most existing sentiment analysis techniques are only able to analyze data at the aggregate level, merely providing a binary classification (positive vs. negative), and …


A Mathematical Programming Model For The Green Mixed Fleet Vehicle Routing Problem With Realistic Energy Consumption And Partial Recharges, Vincent F. Yu, Panca Jodiwan, Aldy Gunawan, Audrey Tedja Widjaja Dec 2019

A Mathematical Programming Model For The Green Mixed Fleet Vehicle Routing Problem With Realistic Energy Consumption And Partial Recharges, Vincent F. Yu, Panca Jodiwan, Aldy Gunawan, Audrey Tedja Widjaja

Research Collection School Of Computing and Information Systems

A green mixed fleet vehicle routing with realistic energy consumption and partial recharges problem (GMFVRP-REC-PR) is addressed in this paper. This problem involves a fixed number of electric vehicles and internal combustion vehicles to serve a set of customers. The realistic energy consumption which depends on several variables is utilized to calculate the electricity consumption of an electric vehicle and fuel consumption of an internal combustion vehicle. Partial recharging policy is included into the problem to represent the real life scenario. The objective of this problem is to minimize the total travelled distance and the total emission produced by internal …


Zac: A Zone Path Construction Approach For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet Jul 2019

Zac: A Zone Path Construction Approach For Effective Real-Time Ridesharing, Meghna Lowalekar, Pradeep Varakantham, Patrick Jaillet

Research Collection School Of Computing and Information Systems

Real-time ridesharing systems such as UberPool, Lyft Line, GrabShare have become hugely popular as they reduce the costs for customers, improve per trip revenue for drivers and reduce traffic on the roads by grouping customers with similar itineraries. The key challenge in these systems is to group the right requests to travel in available vehicles in real-time, so that the objective (e.g., requests served, revenue or delay) is optimized. The most relevant existing work has focussed on generating as many relevant feasible (with respect to available delay for customers) combinations of requests (referred to as trips) as possible in real-time. …


Entropy Based Independent Learning In Anonymous Multi-Agent Settings, Tanvi Verma, Pradeep Varakantham, Hoong Chuin Lau Jul 2019

Entropy Based Independent Learning In Anonymous Multi-Agent Settings, Tanvi Verma, Pradeep Varakantham, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Efficient sequential matching of supply and demand is a problem of interest in many online to offline services. For instance, Uber, Lyft, Grab for matching taxis to customers; Ubereats, Deliveroo, FoodPanda etc for matching restaurants to customers. In these online to offline service problems, individuals who are responsible for supply (e.g., taxi drivers, delivery bikes or delivery van drivers) earn more by being at the ”right” place at the ”right” time. We are interested in developing approaches that learn to guide individuals to be in the ”right” place at the ”right” time (to maximize revenue) in the presence of other …


Re-Org: An Online Repositioning Guidance Agent, Muralidhar Konda, Pradeep Varakantham, Aayush Saxena, Meghna Lowalekar May 2019

Re-Org: An Online Repositioning Guidance Agent, Muralidhar Konda, Pradeep Varakantham, Aayush Saxena, Meghna Lowalekar

Research Collection School Of Computing and Information Systems

No abstract provided.


Route Planning For A Fleet Of Electric Vehicles With Waiting Times At Charging Stations, Baoxiang Li, Shashi Shekhar Jha, Hoong Chuin Lau Apr 2019

Route Planning For A Fleet Of Electric Vehicles With Waiting Times At Charging Stations, Baoxiang Li, Shashi Shekhar Jha, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Electric Vehicles (EVs) are the next wave of technology in the transportation industry. EVs are increasingly becoming common for personal transport and pushing the boundaries to become the mainstream mode of transportation. Use of such EVs in logistic fleets for delivering customer goods is not far from becoming reality. However, managing such fleet of EVs bring new challenges in terms of battery capacities and charging infrastructure for efficient route planning. Researchers have addressed such issues considering different aspects of the EVs such as linear battery charging/discharging rate, fixed travel times, etc. In this paper, we address the issue of waiting …


The Capacitated Team Orienteering Problem, Aldy Gunawan, Kien Ming Ng, Vincent F. Yu, Gordy Adiprasetyo, Hoong Chuin Lau Apr 2019

The Capacitated Team Orienteering Problem, Aldy Gunawan, Kien Ming Ng, Vincent F. Yu, Gordy Adiprasetyo, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

This paper focuses on a recent variant of the Orienteering Problem (OP), namely the Capacitated Team OP (CTOP) which arises in the logistics industry. In this problem, each node is associated with a demand that needs to be satisfied and a score that need to be collected. Given a set of homogeneous fleet of vehicles, the objective is to find a path for each vehicle in order to maximize the total collected score, without violating the capacity and time budget. We propose an Iterated Local Search (ILS) algorithm for solving the CTOP. Two strategies, either accepting a new solution as …


Multiagent Decision Making For Maritime Traffic Management, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau Feb 2019

Multiagent Decision Making For Maritime Traffic Management, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We address the problem of maritime traffic management in busy waterways to increase the safety of navigation by reducing congestion. We model maritime traffic as a large multiagent systems with individual vessels as agents, and VTS authority as the regulatory agent. We develop a maritime traffic simulator based on historical traffic data that incorporates realistic domain constraints such as uncertain and asynchronous movement of vessels. We also develop a traffic coordination approach that provides speed recommendation to vessels in different zones. We exploit the nature of collective interactions among agents to develop a scalable policy gradient approach that can scale …


Multiagent Decision Making For Maritime Traffic Management, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau Feb 2019

Multiagent Decision Making For Maritime Traffic Management, Arambam James Singh, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We address the problem of maritime traffic management in busy waterways to increase the safety of navigation by reducing congestion. We model maritime traffic as a large multiagent systems with individual vessels as agents, and VTS authority as the regulatory agent. We develop a maritime traffic simulator based on historical traffic data that incorporates realistic domain constraints such as uncertain and asynchronous movement of vessels. We also develop a traffic coordination approach that provides speed recommendation to vessels in different zones. We exploit the nature of collective interactions among agents to develop a scalable policy gradient approach that can scale …


Credit Assignment For Collective Multiagent Rl With Global Rewards, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau Dec 2018

Credit Assignment For Collective Multiagent Rl With Global Rewards, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Scaling decision theoretic planning to large multiagent systems is challenging due to uncertainty and partial observability in the environment. We focus on a multiagent planning model subclass, relevant to urban settings, where agent interactions are dependent on their collective influence'' on each other, rather than their identities. Unlike previous work, we address a general setting where system reward is not decomposable among agents. We develop collective actor-critic RL approaches for this setting, and address the problem of multiagent credit assignment, and computing low variance policy gradient estimates that result in faster convergence to high quality solutions. We also develop difference …


Data Center Holistic Demand Response Algorithm To Smooth Microgrid Tie-Line Power Fluctuation, Ting Yang, Yingjie Zhao, Haibo Pen, Zhaoxia Wang Dec 2018

Data Center Holistic Demand Response Algorithm To Smooth Microgrid Tie-Line Power Fluctuation, Ting Yang, Yingjie Zhao, Haibo Pen, Zhaoxia Wang

Research Collection School Of Computing and Information Systems

With the rapid development of cloud computing, artificial intelligence technologies and big data applications, data centers have become widely deployed. High density IT equipment in data centers consumes a lot of electrical power, and makes data center a hungry monster of energy consumption. To solve this problem, renewable energy is increasingly integrated into data center power provisioning systems. Compared to the traditional power supply methods, renewable energy has its unique characteristics, such as intermittency and randomness. When renewable energy supplies power to the data center industrial park, this kind of power supply not only has negative effects on the normal …


Secondary Frequency Stochastic Optimal Control In Independent Microgrids With Virtual Synchronous Generator-Controlled Energy Storage Systems, Ting Yang, Yajian Zhang, Zhaoxia Wang, Haibo Pen Sep 2018

Secondary Frequency Stochastic Optimal Control In Independent Microgrids With Virtual Synchronous Generator-Controlled Energy Storage Systems, Ting Yang, Yajian Zhang, Zhaoxia Wang, Haibo Pen

Research Collection School Of Computing and Information Systems

With the increasing proportion of renewable energy in microgrids (MGs), its stochastic fluctuation of output power has posed challenges to system safety and operation, especially frequency stability. Virtual synchronous generator (VSG) technology, as one effectivemethod, was used to smoothen frequency fluctuation and improve the system's dynamic performance,which can simulate the inertia and damping of the traditional synchronous generator. This study outlines the integration of VSG-controlled energy storage systems (ESSs) and traditional synchronous generators so they jointly participate in secondary frequency regulation in an independent MG. Firstly, a new uncertain state-space model for secondary frequency control is established, considering the measurement …


Instance-Specific Selection Of Aos Methods For Solving Combinatorial Optimisation Problems Via Neural Networks, Teck Hou (Deng Dehao) Teng, Hoong Chuin Lau, Aldy Gunawan Jun 2018

Instance-Specific Selection Of Aos Methods For Solving Combinatorial Optimisation Problems Via Neural Networks, Teck Hou (Deng Dehao) Teng, Hoong Chuin Lau, Aldy Gunawan

Research Collection School Of Computing and Information Systems

Solving combinatorial optimization problems using a fixed set of operators has been known to produce poor quality solutions. Thus, adaptive operator selection (AOS) methods have been proposed. But, despite such effort, challenges such as the choice of suitable AOS method and configuring it correctly for given specific problem instances remain. To overcome these challenges, this work proposes a novel approach known as I-AOS-DOE to perform Instance-specific selection of AOS methods prior to evolutionary search. Furthermore, to configure the AOS methods for the respective problem instances, we apply a Design of Experiment (DOE) technique to determine promising regions of parameter values …


Resource-Constrained Scheduling For Maritime Traffic Management, Lucas Agussurja, Akshat Kumar, Hoong Chuin Lau Feb 2018

Resource-Constrained Scheduling For Maritime Traffic Management, Lucas Agussurja, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

We address the problem of mitigating congestion and preventing hotspots in busy water areas such as Singapore Straits and port waters. Increasing maritime traffic coupled with narrow waterways makes vessel schedule coordination for just-in-time arrival critical for navigational safety. Our contributions are: 1) We formulate the maritime traffic management problem based on the real case study of Singapore waters; 2) We model the problem as a variant of the resource-constrained project scheduling problem (RCPSP), and formulate mixed-integer and constraint programming (MIP/CP) formulations; 3) To improve the scalability, we develop a combinatorial Benders (CB) approach that is significantly more effective than …


Scalable Urban Mobile Crowdsourcing: Handling Uncertainty In Worker Movement, Shih-Fen Cheng, Cen Chen, Thivya Kandappu, Hoong Chuin Lau, Archan Misra, Nikita Jaiman, Randy Tandriansyah Daratan, Desmond Koh Feb 2018

Scalable Urban Mobile Crowdsourcing: Handling Uncertainty In Worker Movement, Shih-Fen Cheng, Cen Chen, Thivya Kandappu, Hoong Chuin Lau, Archan Misra, Nikita Jaiman, Randy Tandriansyah Daratan, Desmond Koh

Research Collection School Of Computing and Information Systems

In this article, we investigate effective ways of utilizing crowdworkers in providing various urban services. The task recommendation platform that we design can match tasks to crowdworkers based on workers’ historical trajectories and time budget limits, thus making recommendations personal and efficient. One major challenge we manage to address is the handling of crowdworker’s trajectory uncertainties. In this article, we explicitly allow multiple routine routes to be probabilistically associated with each worker. We formulate this problem as an integer linear program whose goal is to maximize the expected total utility achieved by all workers. We further exploit the separable structures …


Risk-Sensitive Stochastic Orienteering Problems For Trip Optimization In Urban Environments, Pradeep Varakantham, Akshat Kumar, Hoong Chuin Lau, William Yeoh Feb 2018

Risk-Sensitive Stochastic Orienteering Problems For Trip Optimization In Urban Environments, Pradeep Varakantham, Akshat Kumar, Hoong Chuin Lau, William Yeoh

Research Collection School Of Computing and Information Systems

Orienteering Problems (OPs) are used to model many routing and trip planning problems. OPs are a variantof the well-known traveling salesman problem where the goal is to compute the highest reward path thatincludes a subset of vertices and has an overall travel time less than a specified deadline. However, the applicabilityof OPs is limited due to the assumption of deterministic and static travel times. To that end, Campbellet al. extended OPs to Stochastic OPs (SOPs) to represent uncertain travel times (Campbell et al. 2011). Inthis article, we make the following key contributions: (1) We extend SOPs to Dynamic SOPs (DSOPs), …


Integrated Cooperation And Competition In Multi-Agent Decision-Making, Kyle Hollins Wray, Akshat Kumar, Shlomo Zilberstein Feb 2018

Integrated Cooperation And Competition In Multi-Agent Decision-Making, Kyle Hollins Wray, Akshat Kumar, Shlomo Zilberstein

Research Collection School Of Computing and Information Systems

Observing that many real-world sequential decision problems are not purely cooperative or purely competitive, we propose a new model—cooperative-competitive process (CCP)—that can simultaneously encapsulate both cooperation and competition.First, we discuss how the CCP model bridges the gap between cooperative and competitive models. Next, we investigate a specific class of group-dominant CCPs, in which agents cooperate to achieve a common goal as their primary objective, while also pursuing individual goals as a secondary objective. We provide an approximate solution for this class of problems that leverages stochastic finite-state controllers.The model is grounded in two multi-robot meeting and box pushing domains that …


Policy Gradient With Value Function Approximation For Collective Multiagent Planning, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau Dec 2017

Policy Gradient With Value Function Approximation For Collective Multiagent Planning, Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Decentralized (PO)MDPs provide an expressive framework for sequential decision making in a multiagent system. Given their computational complexity, recent research has focused on tractable yet practical subclasses of Dec-POMDPs. We address such a subclass called CDec-POMDP where the collective behavior of a population of agents affects the joint-reward and environment dynamics. Our main contribution is an actor-critic (AC) reinforcement learning method for optimizing CDec-POMDP policies. Vanilla AC has slow convergence for larger problems. To address this, we show how a particular decomposition of the approximate action-value function over agents leads to effective updates, and also derive a new way to …


Efficient Gate System Operations For A Multipurpose Port Using Simulation Optimization, Ketki Kulkarni, Trong Khiem Tran, Hai Wang, Hoong Chuin Lau Dec 2017

Efficient Gate System Operations For A Multipurpose Port Using Simulation Optimization, Ketki Kulkarni, Trong Khiem Tran, Hai Wang, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

Port capacity is determined by three major infrastructural resources namely, berths, yards and gates. Theadvertised capacity is constrained by the least of the capacities of the three resources. While a lot ofattention has been paid to optimizing berth and yard capacities, not much attention has been given toanalyzing the gate capacity. The gates are a key node between the land-side and sea-side operations in anocean-to-cities value chain. The gate system under consideration, located at an important port in an Asiancity, is a multi-class parallel queuing system with non-homogeneous Poisson arrivals. It is hard to obtaina closed form analytic approach for …


A Selective-Discrete Particle Swarm Optimization Algorithm For Solving A Class Of Orienteering Problems, Aldy Gunawan, Vincent F. Yu, Perwira Redi, Parida Jewpanya, Hoong Chuin Lau Dec 2017

A Selective-Discrete Particle Swarm Optimization Algorithm For Solving A Class Of Orienteering Problems, Aldy Gunawan, Vincent F. Yu, Perwira Redi, Parida Jewpanya, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

This study addresses a class of NP-hard problem called the Orienteering Problem (OP), which belongs to a well-known class of vehicle routing problems. In the OP, a set of nodes that associated with a location and a score is given. The time required to travel between each pair of nodes is known in advance. The total travel time is limited by a predetermined time budget. The objective is to select a subset of nodes to be visited that maximizes the total collected score within a path. The Team OP (TOP) is an extension of OP that incorporates multiple paths. Another …


A Unified Framework For Vehicle Rerouting And Traffic Light Control To Reduce Traffic Congestion, Zhiguang Cao, Siwei Jiang, Jie Zhang, Hongliang Guo Jul 2017

A Unified Framework For Vehicle Rerouting And Traffic Light Control To Reduce Traffic Congestion, Zhiguang Cao, Siwei Jiang, Jie Zhang, Hongliang Guo

Research Collection School Of Computing and Information Systems

As the number of vehicles grows rapidly each year, more and more traffic congestion occurs, becoming a big issue for civil engineers in almost all metropolitan cities. In this paper, we propose a novel pheromone-based traffic management framework for reducing traffic congestion, which unifies the strategies of both dynamic vehicle rerouting and traffic light control. Specifically, each vehicle, represented as an agent, deposits digital pheromones over its route, while roadside infrastructure agents collect the pheromones and fuse them to evaluate real-time traffic conditions as well as to predict expected road congestion levels in near future. Once road congestion is predicted, …


A Multi-Agent System For Coordinating Vessel Traffic, Teck-Hou Teng, Hoong Chuin Lau, Akshat Kumar May 2017

A Multi-Agent System For Coordinating Vessel Traffic, Teck-Hou Teng, Hoong Chuin Lau, Akshat Kumar

Research Collection School Of Computing and Information Systems

Environmental, regulatory and resource constraints affects the safety and efficiency of vessels navigating in and out of the ports. Movement of vessels under such constraints must be coordinated for improving safety and efficiency. Thus, we frame the vessel coordination problem as a multi-agent path-finding (MAPF) problem. We solve this MAPF problem using a Coordinated Path-Finding (CPF) algorithm. Based on the local search paradigm, the CPF algorithm improves on the aggregated path quality of the vessels iteratively. Outputs of the CPF algorithm are the coordinated trajectories. The Vessel Coordination Module (VCM) described here is the module encapsulating our MAPF-based approach for …


An Efficient Approach To Model-Based Hierarchical Reinforcement Learning, Zhuoru Li, Akshay Narayan, Tze-Yun Leong Feb 2017

An Efficient Approach To Model-Based Hierarchical Reinforcement Learning, Zhuoru Li, Akshay Narayan, Tze-Yun Leong

Research Collection School Of Computing and Information Systems

We propose a model-based approach to hierarchical reinforcement learning that exploits shared knowledge and selective execution at different levels of abstraction, to efficiently solve large, complex problems. Our framework adopts a new transition dynamics learning algorithm that identifies the common action-feature combinations of the subtasks, and evaluates the subtask execution choices through simulation. The framework is sample efficient, and tolerates uncertain and incomplete problem characterization of the subtasks. We test the framework on common benchmark problems and complex simulated robotic environments. It compares favorably against the stateof-the-art algorithms, and scales well in very large problems.


Decentralized Planning In Stochastic Environments With Submodular Rewards, Rajiv Ranjan Kumar, Pradeep Varakantham, Akshat Kumar Feb 2017

Decentralized Planning In Stochastic Environments With Submodular Rewards, Rajiv Ranjan Kumar, Pradeep Varakantham, Akshat Kumar

Research Collection School Of Computing and Information Systems

Decentralized Markov Decision Process (Dec-MDP) providesa rich framework to represent cooperative decentralizedand stochastic planning problems under transition uncertainty.However, solving a Dec-MDP to generate coordinatedyet decentralized policies is NEXP-Hard. Researchershave made significant progress in providing approximate approachesto improve scalability with respect to number ofagents. However, there has been little or no research devotedto finding guarantees on solution quality for approximateapproaches considering multiple (more than 2 agents)agents. We have a similar situation with respect to the competitivedecentralized planning problem and the StochasticGame (SG) model. To address this, we identify models in thecooperative and competitive case that rely on submodular rewards,where we show …


Dynamic Repositioning To Reduce Lost Demand In Bike Sharing Systems, Supriyo Ghosh, Pradeep Varakantham, Yossiri Adulyasak, Patrick Jaillet Feb 2017

Dynamic Repositioning To Reduce Lost Demand In Bike Sharing Systems, Supriyo Ghosh, Pradeep Varakantham, Yossiri Adulyasak, Patrick Jaillet

Research Collection School Of Computing and Information Systems

Bike Sharing Systems (BSSs) are widely adopted in major cities of the world due to concerns associated with extensive private vehicle usage, namely, increased carbon emissions, traffic congestion and usage of nonrenewable resources. In a BSS, base stations are strategically placed throughout a city and each station is stocked with a pre-determined number of bikes at the beginning of the day. Customers hire the bikes from one station and return them at another station. Due to unpredictable movements of customers hiring bikes, there is either congestion (more than required) or starvation (fewer than required) of bikes at base stations. Existing …


Orienteering Problem: A Survey Of Recent Variants, Solution Approaches And Applications, Aldy Gunawan, Hoong Chuin Lau, Pieter Vansteenwegen Dec 2016

Orienteering Problem: A Survey Of Recent Variants, Solution Approaches And Applications, Aldy Gunawan, Hoong Chuin Lau, Pieter Vansteenwegen

Research Collection School Of Computing and Information Systems

The Orienteering Problem (OP) has received a lot of attention in the past few decades. The OP is a routing problem in which the goal is to determine a subset of nodes to visit, and in which order, so that the total collected score is maximized and a given time budget is not exceeded. A number of typical variants has been studied, such as the Team OP, the (Team) OP with Time Windows and the Time Dependent OP. Recently, a number of new variants of the OP was introduced, such as the Stochastic OP, the Generalized OP, the Arc OP, …


Managing Egress Of Crowd During Infrastructure Disruption, Teck Hou Teng, Shih-Fen Cheng, Trong-Nghia Truong, Hoong Chuin Lau Dec 2016

Managing Egress Of Crowd During Infrastructure Disruption, Teck Hou Teng, Shih-Fen Cheng, Trong-Nghia Truong, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

In a large indoor environment such as a sports arena or convention center, smooth egress of crowd after an event can be seriously affected if infrastructure such as elevators and escalators break down. In this paper, we propose a novel crowd simulator known as SIM-DISRUPT for simulating egress scenarios in non-emergency situations. To surface the impact of disrupted infrastructure on the egress of crowd, SIM-DISRUPT includes features that allow users to specify selective disruptions as well as strategies for controlling the distribution and egress choices of crowd. Using SIM-DISRUPT, we investigate effects of crowd distribution, egress choices and infrastructure disruptions …


An Agent-Based Approach To Human Migration Movement, Larry Lin, Kathleen M. Carley, Shih-Fen Cheng Dec 2016

An Agent-Based Approach To Human Migration Movement, Larry Lin, Kathleen M. Carley, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

How are the populations of the world likely to shift? Which countries will be impacted by sea-level rise? This paper uses a country-level agent-based dynamic network model to examine shifts in population given network relations among countries, which influences overall population change. Some of the networks considered include: alliance networks, shared language networks, economic influence networks, and proximity networks. Validation of model is done for migration probabilities between countries, as well as for country populations and distributions. The proposed framework provides a way to explore the interaction between climate change and policy factors at a global scale.