Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Advances And Applications In High-Dimensional Heuristic Optimization, Samuel Alexander Vanfossan Jan 2022

Advances And Applications In High-Dimensional Heuristic Optimization, Samuel Alexander Vanfossan

Doctoral Dissertations

“Applicable to most real-world decision scenarios, multiobjective optimization is an area of multicriteria decision-making that seeks to simultaneously optimize two or more conflicting objectives. In contrast to single-objective scenarios, nontrivial multiobjective optimization problems are characterized by a set of Pareto optimal solutions wherein no solution unanimously optimizes all objectives. Evolutionary algorithms have emerged as a standard approach to determine a set of these Pareto optimal solutions, from which a decision-maker can select a vetted alternative. While easy to implement and having demonstrated great efficacy, these evolutionary approaches have been criticized for their runtime complexity when dealing with many alternatives or …


Communicating Uncertain Information From Deep Learning Models In Human Machine Teams, Harishankar V. Subramanian, Casey I. Canfield, Daniel Burton Shank, Luke Andrews, Cihan H. Dagli Oct 2020

Communicating Uncertain Information From Deep Learning Models In Human Machine Teams, Harishankar V. Subramanian, Casey I. Canfield, Daniel Burton Shank, Luke Andrews, Cihan H. Dagli

Engineering Management and Systems Engineering Faculty Research & Creative Works

The role of human-machine teams in society is increasing, as big data and computing power explode. One popular approach to AI is deep learning, which is useful for classification, feature identification, and predictive modeling. However, deep learning models often suffer from inadequate transparency and poor explainability. One aspect of human systems integration is the design of interfaces that support human decision-making. AI models have multiple types of uncertainty embedded, which may be difficult for users to understand. Humans that use these tools need to understand how much they should trust the AI. This study evaluates one simple approach for communicating …


Computational Model For Neural Architecture Search, Ram Deepak Gottapu Jan 2020

Computational Model For Neural Architecture Search, Ram Deepak Gottapu

Doctoral Dissertations

"A long-standing goal in Deep Learning (DL) research is to design efficient architectures for a given dataset that are both accurate and computationally inexpensive. At present, designing deep learning architectures for a real-world application requires both human expertise and considerable effort as they are either handcrafted by careful experimentation or modified from a handful of existing models. This method is inefficient as the process of architecture design is highly time-consuming and computationally expensive.

The research presents an approach to automate the process of deep learning architecture design through a modeling procedure. In particular, it first introduces a framework that treats …


Development Of A Modeling Algorithm To Predict Lean Implementation Success, Richard Charles Barclay Jan 2020

Development Of A Modeling Algorithm To Predict Lean Implementation Success, Richard Charles Barclay

Doctoral Dissertations

”Lean has become a common term and goal in organizations throughout the world. The approach of eliminating waste and continuous improvement may seem simple on the surface but can be more complex when it comes to implementation. Some firms implement lean with great success, getting complete organizational buy-in and realizing the efficiencies foundational to lean. Other organizations struggle to implement lean. Never able to get the buy-in or traction needed to really institute the sort of cultural change that is often needed to implement change. It would be beneficial to have a tool that organizations could use to assess their …


Cognition-Based Approaches For High-Precision Text Mining, George John Shannon Jan 2017

Cognition-Based Approaches For High-Precision Text Mining, George John Shannon

Doctoral Dissertations

"This research improves the precision of information extraction from free-form text via the use of cognitive-based approaches to natural language processing (NLP). Cognitive-based approaches are an important, and relatively new, area of research in NLP and search, as well as linguistics. Cognitive approaches enable significant improvements in both the breadth and depth of knowledge extracted from text. This research has made contributions in the areas of a cognitive approach to automated concept recognition in.

Cognitive approaches to search, also called concept-based search, have been shown to improve search precision. Given the tremendous amount of electronic text generated in our digital …


A Bounded Actor-Critic Algorithm For Reinforcement Learning, Ryan Jacob Lawhead Jan 2017

A Bounded Actor-Critic Algorithm For Reinforcement Learning, Ryan Jacob Lawhead

Masters Theses

"This thesis presents a new actor-critic algorithm from the domain of reinforcement learning to solve Markov and semi-Markov decision processes (or problems) in the field of airline revenue management (ARM). The ARM problem is one of control optimization in which a decision-maker must accept or reject a customer based on a requested fare. This thesis focuses on the so-called single-leg version of the ARM problem, which can be cast as a semi-Markov decision process (SMDP). Large-scale Markov decision processes (MDPs) and SMDPs suffer from the curses of dimensionality and modeling, making it difficult to create the transition probability matrices (TPMs) …


A New Reinforcement Learning Algorithm With Fixed Exploration For Semi-Markov Decision Processes, Angelo Michael Encapera Jan 2017

A New Reinforcement Learning Algorithm With Fixed Exploration For Semi-Markov Decision Processes, Angelo Michael Encapera

Masters Theses

"Artificial intelligence or machine learning techniques are currently being widely applied for solving problems within the field of data analytics. This work presents and demonstrates the use of a new machine learning algorithm for solving semi-Markov decision processes (SMDPs). SMDPs are encountered in the domain of Reinforcement Learning to solve control problems in discrete-event systems. The new algorithm developed here is called iSMART, an acronym for imaging Semi-Markov Average Reward Technique. The algorithm uses a constant exploration rate, unlike its precursor R-SMART, which required exploration decay. The major difference between R-SMART and iSMART is that the latter uses, in addition …


Quantum Inspired Algorithms For Learning And Control Of Stochastic Systems, Karthikeyan Rajagopal Jan 2015

Quantum Inspired Algorithms For Learning And Control Of Stochastic Systems, Karthikeyan Rajagopal

Doctoral Dissertations

"Motivated by the limitations of the current reinforcement learning and optimal control techniques, this dissertation proposes quantum theory inspired algorithms for learning and control of both single-agent and multi-agent stochastic systems.

A common problem encountered in traditional reinforcement learning techniques is the exploration-exploitation trade-off. To address the above issue an action selection procedure inspired by a quantum search algorithm called Grover's iteration is developed. This procedure does not require an explicit design parameter to specify the relative frequency of explorative/exploitative actions.

The second part of this dissertation extends the powerful adaptive critic design methodology to solve finite horizon stochastic optimal …