Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Metals — Oxidation

2004

Articles 1 - 6 of 6

Full-Text Articles in Nuclear Engineering

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead-Alloys Coolant Systems, Yitung Chen Dec 2004

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead-Alloys Coolant Systems, Yitung Chen

Transmutation Sciences Materials (TRP)

The goal of the proposed research project is to provide basic understanding of the protective oxide layer behaviors and to develop oxide layer growth models of steels in non-isothermal lead-alloys (lead or lead-bismuth eutectic) coolant systems. It is widely recognized that the corrosiveness of the lead-alloys is a critical obstacle and challenge for which it can be safely used or applied in the nuclear coolant systems. Active oxygen control technique can promote the formation of the “self-healing” oxide films on the structural material surface, drastically reducing steel corrosion and coolant contamination. Many experiments of steels exposed to flowing lead-alloys have …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2004-08/31/2004, Samir Moujaes, Yitung Chen Aug 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2004-08/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Third Quarterly Report 03/01/2004-05/31/2004, Samir Moujaes, Yitung Chen May 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Third Quarterly Report 03/01/2004-05/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead-Alloys Coolant Systems, Yitung Chen, Jinsuo Zhang, Jichun Li Apr 2004

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead-Alloys Coolant Systems, Yitung Chen, Jinsuo Zhang, Jichun Li

Transmutation Sciences Materials (TRP)

The goal of the proposed research project is to provide basic understanding of the protective oxide layer behaviors and to develop oxide layer growth models of steels in non-isothermal leadalloys (lead or lead-bismuth eutectic) coolant systems. It is widely recognized that the corrosiveness of the lead-alloys is a critical obstacle and challenge for which it can be safely used or applied in the nuclear coolant systems. Active oxygen control technique can promote the formation of the “self-healing” oxide films on the structural material surface, drastically reducing steel corrosion and coolant contamination. Many experiments of steels exposed to flowing leadalloys have …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: First Quarterly Report 01/12/04-02/29/04, Samir Moujaes, Yitung Chen Feb 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: First Quarterly Report 01/12/04-02/29/04, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Jan 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The corrosion of structural materials is a major concern for the use of lead-bismuth eutectic (LBE) systems for nuclear applications such as in transmuter targets or fast reactors. Corrosion in liquid metal systems can occur through various processes, including, for example, dissolution, formation of inter-metallic compounds at the interface, and penetration of liquid metal along grain boundaries. Predicting the rate of these processes depends on numerous system operational factors: temperature, system geometry, thermal gradients, solid and liquid compositions, and velocity of the liquid metal, to name a few. Corrosion, along with mechanical and/or hydraulic factors, often contributes to component failure. …