Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Metals — Effect of high temperatures on

Articles 1 - 30 of 30

Full-Text Articles in Nuclear Engineering

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy Jan 2005

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The primary objective of this task was to evaluate the effects of environmental and mechanical parameters on environment induced degradations of candidate target structural materials for applications in spallation-neutron-target systems. The materials selected for evaluation and characterization were martensitic stainless steels including Alloys HT-9, EP-823, and 422.

Accelerator-driven transmutation systems involve bombarding a target material such as molten lead-bismuth-eutectic (LBE) by a proton beam, thereby producing neutrons. The molten LBE target will be contained in a subsystem structural container made of a suitable material such as Alloys HT-9, EP-823, and 422. During the transmutation process, the target structural material may …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole Jan 2005

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

During the transmutation process, a significant amount of heat can be generated in a molten lead-bismuth-eutectic (LBE) target, which will be contained in a subsystem structural container made of a suitable martensitic iron-chromium-molbdenum (Fe-Cr-Mo) stainless steel such as Alloys EP-823, HT-9 and 422. These materials will be subjected to high tensile stresses while they are in contact with the molten LBE at temperatures ranging between 400 and 600oC. Therefore, a research program was conducted to evaluate the deformation characteristics of all three alloys in properly heat-treated conditions at temperatures relevant to the operating conditions.


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Final Progress Report (September 2003 – August 2004), Ajit K. Roy, Brendan O'Toole Oct 2004

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Final Progress Report (September 2003 – August 2004), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this task is to evaluate the tensile properties of three martensitic alloys namely, Alloys EP-823, HT-9 and 422 at temperatures relevant to the transmutation processes. Testing has been performed to evaluate the tensile properties of all three alloys at temperatures ranging from ambient to 600°C. The test materials were thermally-treated (quenched and tempered) prior to the evaluation of their tensile properties. The deformation characteristics of these tensile specimens, upon completion of testing, were evaluated by scanning electron microscopy (SEM). Efforts were also made to identify and characterize defects such as dislocations using transmission electron microscopy …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Annual Progress Report (May 2003 – May 2004), Ajit K. Roy Jul 2004

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Annual Progress Report (May 2003 – May 2004), Ajit K. Roy

Transmutation Sciences Materials (TRP)

As indicated in the original proposal, the primary objective of this task was to evaluate the effect of hydrogen on environment-assisted cracking of candidate target structural materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization were martensitic stainless steels including Alloy EP 823, HT-9, and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) of these materials were evaluated in neutral and acidic aqueous environments using smooth and notched tensile specimens under constant-load (CL) and slow-strain-rate (SSR) conditions. Further, the …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy Jan 2004

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of environmental and mechanical parameters on environment induced degradations of candidate target structural materials for applications in spallation-neutron-target systems, such as accelerator-driven systems for the transmutation of waste. The materials selected for evaluation and characterization are martensitic stainless steels including Alloys HT-9, EP-823 and Type 422 stainless steel (SS).

More recently, this experimental program has been expanded to evaluate the effect of molten lead-bismuth eutectic (LBE) on the corrosion behavior of target structural materials in the presence of oxygen. Since the Materials Performance Laboratory (MPL) at UNLV currently cannot …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole Jan 2004

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The focus of this work is to determine the effect of elevated temperatures on the tensile properties of Alloy EP-823 and other martensitic alloys having similar compositions. The information obtained through this work describing the mechanism of elevated-temperature deformation will assist in developing suitable target structural materials possessing enhanced LBE corrosion resistance at process temperatures, allowing the continued development and eventual deployment of these technologies.


Stress Corrosion Cracking Of Target Material, Mohammad K. Hossain Jan 2004

Stress Corrosion Cracking Of Target Material, Mohammad K. Hossain

Transmutation Sciences Materials (TRP)

The primary objective of this paper is to evaluate the effect of hydrogen on environment assisted cracking of candidate target materials for transmutation applications. Transmutation refers to transformation of long-lived actinides and fission products from spent nuclear fuels (SNF), and occurs when the nucleus of an atom changes because of natural radioactive decay, nuclear fission, nuclear fusion, neutron capture, or other related processes. Martensitic Alloy EP 823 was selected to be the candidate alloy for this investigation. During the initial phase, the stress corrosion cracking (SCC) behavior of this alloy was evaluated in neutral (pH: 6-7) and acidic (pH: 2-3) …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Quarterly Progress Report (June 1 – August 31, 2003), Ajit K. Roy, Brendan O'Toole Oct 2003

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Quarterly Progress Report (June 1 – August 31, 2003), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

As indicated in the original proposal, the primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate target materials for applications in spallationneutron- target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including Alloy HT-9, Alloy EP 823 and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these materials are being evaluated in aqueous environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Quarterly Progress Report (June 01 – Aug 31, 2003), Ajit K. Roy, Brendan O'Toole Oct 2003

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Quarterly Progress Report (June 01 – Aug 31, 2003), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this project is to evaluate the elevated temperature tensile properties of Alloy EP-823, a leading target material for accelerator-driven waste transmutation applications. This Alloy has been proven to be an excellent structural material to contain the lead-bismuth-eutectic (LBE) nuclear coolant needed for fast spectrum operations. Very little data exist in the open literature on the tensile properties of this Alloy. The test material will be thermally treated prior to the evaluation of its tensile properties at temperatures relevant to the transmutation applications. The deformation characteristics of tensile specimens, upon completion of testing, will be evaluated by surface …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Annual Progress Report (September 2002 – August 2003), Ajit K. Roy, Brendan O'Toole Oct 2003

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Annual Progress Report (September 2002 – August 2003), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this project is to evaluate the elevated temperature tensile properties of Alloy EP-823, a leading structural target material for accelerator-driven waste transmutation applications. This alloy has been proven to be an excellent structural material to contain the molten lead-bismuth-eutectic (LBE) nuclear coolant needed for fast spectrum operations. Very little data exist in the open literature on the tensile properties of this martensitic alloy. Three different heats of this material, produced by vacuum induction melting, were thermally treated to produce fully-tempered martensitic microstructure without any retained austenite (Table I). Cylindrical specimens were fabricated from the heat-treated round bars …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Annual Progress Report (May 2002 – May 2003), Ajit K. Roy, Brendan O'Toole Jun 2003

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Annual Progress Report (May 2002 – May 2003), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

As indicated in the original proposal, the primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate target materials for applications in spallationneutron- target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including Alloy HT-9, Alloy EP 823 and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these materials are being evaluated in aqueous environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications Trp Task-10: Quarterly Progress Report (March 01 – May 31, 2003), Ajit K. Roy, Brendan O'Toole May 2003

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications Trp Task-10: Quarterly Progress Report (March 01 – May 31, 2003), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this project is to evaluate the elevated temperature tensile properties of Alloy EP- 823, a leading target material for accelerator-driven waste transmutation applications. This alloy has been proven to be an excellent structural material to contain the lead-bismuth-eutectic (LBE) nuclear coolant needed for fast spectrum operations. Very little data exist in the open literature on the tensile properties of this alloy. The test material will be thermally treated prior to the evaluation of its tensile properties at temperatures relevant to the transmutation applications. The deformation characteristics of tensile specimens, upon completion of testing, will be evaluated by …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications, Ajit K. Roy, Brendan O'Toole May 2003

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this project is to evaluate the elevated temperature tensile properties of Alloy EP-823, a leading target material for accelerator-driven waste transmutation applications. This alloy has been proven to be an excellent structural material to contain the lead-bismuth-eutectic (LBE) nuclear coolant needed for fast spectrum operations. However, very little data exist in the open literature on the tensile properties of this alloy. The selection of Alloy EP-823 as the test material in the proposed task is based on the recommendation of our collaborator at the Los Alamos National Laboratory (LANL). The test material will be thermally treated prior …


Stress Corrosion Cracking Of Type 422 Stainless Steel For Applications In Spallation-Neutron-Target Systems, Ramprashad Prabhakaran Mar 2003

Stress Corrosion Cracking Of Type 422 Stainless Steel For Applications In Spallation-Neutron-Target Systems, Ramprashad Prabhakaran

Transmutation Sciences Materials (TRP)

Introduction

• This research program is aimed at evaluating different types of environment-induced degradation of candidate target materials for applications in transmutation of spent nuclear fuels (SNF).

• Transmutation refers to the elimination of long-lived actinides and fission products from SNF.

Objectives

• Evaluate susceptibility of candidate target materials to stress corrosion cracking (SCC) and localized corrosion (pitting and crevice) in neutral and acidic aqueous environments at ambient and elevated temperatures

• Determine the extent and morphology of cracking in tested materials as functions of experimental and environmental variables including pH, temperature, loading conditions and specimen geometry

• Develop mechanistic …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy, Brendan O'Toole Feb 2003

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

During the past two years (2001-2002) of this project, the primary effort was focused on evaluating the effect of hydrogen on the cracking behavior of candidate target materials namely, Alloys EP-823, HT-9 and 422 in aqueous environments of different pH values at ambient and elevated temperatures. More recently, emphasis is being placed to evaluate the cracking behavior of these materials in molten lead-bismuth eutectic (LBE) environment at much higher testing temperatures so as to compare the cracking susceptibility in environments containing molten metals and aqueous solutions, respectively. The most recent tests to evaluate the cracking susceptibility were primarily based on …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy, Brendan O'Toole, Zhiyong Wang, David W. Hatchett Jan 2003

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials, Ajit K. Roy, Brendan O'Toole, Zhiyong Wang, David W. Hatchett

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the potential for the environmentally-assisted cracking of candidate target materials for applications in spallation-neutron-target systems, such as accelerator-driven system for the transmutation of waste. The materials selected for evaluation and characterization are martensitic stainless steels (SS) including Alloys HT- 9, EP 823 and Type 422 stainless steel.

More recently, this experimental program has been expanded to evaluate the effect of molten lead-bismuth eutectic (LBE) on the corrosion behavior of target materials in the presence of oxygen. Since the materials performance laboratory (MPL) at UNLV currently cannot accommodate this type of testing, …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole Jan 2003

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this task is to evaluate the mechanical properties of Alloy EP-823 at temperatures relevant to the transmutation processes. Testing has been initiated to evaluate the tensile properties of martensitic Alloy EP-823 stainless steel at temperatures ranging from ambient (25 °C) to 600°C. The test materials were thermally treated prior to the evaluation of their tensile properties. The deformation characteristics of these tensile specimens, upon completion of testing, will be evaluated by surface analytical techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM).


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Annual Progress Report (September 2001 – August 2002), Ajit K. Roy, Brendan O'Toole Sep 2002

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Annual Progress Report (September 2001 – August 2002), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this project is to evaluate the elevated temperature tensile properties of Alloy EP-823, a leading target material for accelerator-driven waste transmutation applications. This alloy has been proven to be an excellent structural material to contain the lead-bismuth-eutectic (LBE) nuclear coolant needed for fast spectrum operations. Very little data exist in the open literature on the tensile properties of this alloy. The test material will be thermally treated prior to the evaluation of its tensile properties at temperatures relevant to the transmutation applications. The deformation characteristics of tensile specimens, upon completion of testing, will be evaluated by surface …


Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems: Quarterly Progress Report (June 01 – August 31, 2002), Ajit K. Roy, Brendan O'Toole Aug 2002

Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems: Quarterly Progress Report (June 01 – August 31, 2002), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate target materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including Alloy HT-9, Alloy EP 823 and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these materials are being evaluated in environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. Further, the localized corrosion behavior of these alloys …


Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems: Annual Progress Report (May 2001 – May 2002), Ajit K. Roy, Brendan O'Toole Jun 2002

Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems: Annual Progress Report (May 2001 – May 2002), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate target materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including Alloy HT-9, Alloy EP 823 and Type 422 stainless steel. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these materials are being evaluated in environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. Further, the localized corrosion behavior of these alloys …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823: Aaa Task-10 Quarterly (03/01, 2002 –05/31, 2002) Report, Ajit K. Roy, Brendan O'Toole Jun 2002

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823: Aaa Task-10 Quarterly (03/01, 2002 –05/31, 2002) Report, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The objective of this task is to evaluate the elevated temperature tensile properties of Alloy EP-823, a leading target material for accelerator-driven waste transmutation applications. The test material will be thermally treated prior to evaluation of its tensile properties at temperatures relevant to the transmutation applications. The deformation characteristics of tensile specimens, upon completion of testing, will be evaluated by surface analytical techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall results are expected to provide a mechanistic understanding of high-temperature deformation behavior of Alloy EP-823 as a function of heat treatment.

Highlights of Accomplishment

• …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications, Ajit K. Roy, Brendan O'Toole May 2002

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this project is to evaluate the elevated temperature tensile properties of Alloy EP-823, a leading target material for accelerator-driven waste transmutation applications. This alloy has been proven to be an excellent structural material to contain the lead-bismuth-eutectic (LBE) nuclear coolant needed for fast spectrum operations. However, very little data exist in the open literature on the tensile properties of this alloy. The selection of Alloy EP-823 as the test material in the proposed task is based on the recommendation of our collaborator at the Los Alamos National Laboratory (LANL). The test material will be thermally treated prior …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Aaa Task-4 Quarterly (December 1, 2001 – February 28, 2002) Report, Ajit K. Roy, Brendan O'Toole Mar 2002

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Aaa Task-4 Quarterly (December 1, 2001 – February 28, 2002) Report, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including HT- 9, EP 823 and 422. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these alloys will be evaluated in environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. The extent and morphology of cracking of these alloys will further be evaluated …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823: Aaa Task-10 Quarterly (12/1, 2001 –02/28, 2002) Report, Ajit K. Roy, Brendan O'Toole Mar 2002

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823: Aaa Task-10 Quarterly (12/1, 2001 –02/28, 2002) Report, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The objective of this task is to evaluate the elevated temperature tensile properties of Alloy EP-823, a leading target material for accelerator-driven waste transmutation applications. The test material will be thermally treated prior to evaluation of its tensile properties at temperatures relevant to the transmutation applications. The deformation characteristics of tensile specimens, upon completion of testing, will be evaluated by surface analytical techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall results are expected to provide a mechanistic understanding of high-temperature deformation behavior of Alloy EP-823 as a function of heat treatment.

Highlights of Accomplishment

• …


Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems, Ajit K. Roy, Brendan O'Toole, Zhiyong Wang, David W. Hatchett Jan 2002

Hydrogen-Induced Embrittlement Of Candidate Target Materials For Applications In Spallation-Neutron-Target Systems, Ajit K. Roy, Brendan O'Toole, Zhiyong Wang, David W. Hatchett

Transmutation Sciences Materials (TRP)

Spallation-neutron-sources, such as those under investigation for use in accelerator-driven transmutation systems, generate neutrons through the collision of high-energy protons, or charged hydrogen atoms, with heavy metal targets such as lead. As a result, these systems also tend to deposit a significant amount of hydrogen in the materials of the transmuter target and superstructure. This can result in accelerated corrosion and changes in the properties of the exposed materials. Of particular importance is a phenomenon called hydrogen embrittlement, in which materials lose their ductility (ability to deform under stress) and become brittle (more susceptible to fracture) after reacting with hydrogen. …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole Jan 2002

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

Alloy EP-823 has been developed as a structural material for Lead Bismuth Eutectic (LBE) systems, such as those under development for nuclear transmutation systems, as well as other applications. However, very little data regarding the mechanical properties of this alloy exists in the open literature, particularly in the temperature regime of interest for transmutation systems. To address this need, the UNLV research team, in collaboration with researchers from Los Alamos National Laboratory, has developed a research program to evaluate tensile properties of Alloy EP-823 stainless steel at elevated temperatures, which is not being performed at any other facility to date. …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Aaa Task-4 Quarterly (September 1 – November 30, 2001) Report, Ajit K. Roy, Brendan O'Toole Nov 2001

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Aaa Task-4 Quarterly (September 1 – November 30, 2001) Report, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate materials for applications in spallation-neutron-target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including HT- 9, EP 823 and 422. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these alloys will be evaluated in environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. The extent and morphology of cracking of these alloys will further be evaluated …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823: Task 10, First Quarter Report, Ajit K. Roy, Brendan O'Toole Nov 2001

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823: Task 10, First Quarter Report, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The objective of this task is to evaluate the elevated temperature tensile properties of Alloy EP-823, a leading target material for accelerator-driven waste transmutation applications. The test material will be thermally treated prior to evaluation of its tensile properties at temperatures relevant to the transmutation applications. The deformation characteristics of tensile specimens, upon completion of testing, will be evaluated by surface analytical techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall results are expected to provide a mechanistic understanding of high-temperature deformation behavior of Alloy EP-823 as a function of heat treatment.

Highlights of Accomplishment

• …


Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Aaa Task-4 Quarterly (June 1 – August 31, 2001) Report, Ajit K. Roy, Brendan O'Toole Sep 2001

Environment-Induced Degradation And Crack-Growth Studies Of Candidate Target Materials: Aaa Task-4 Quarterly (June 1 – August 31, 2001) Report, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The subject task entitled “Hydrogen-Induced Embrittlement of Candidate Target Materials for Applications in Spallation-Neutron-Target Systems” had commenced during the quarter ending on August 31, 2001. A research account has been established, contracts for both faculty and students have been prepared, and efforts are well underway to embark on the related research activities, as proposed.

As the title of this project implies, the primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate materials for applications in spallationneutron- target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications, Ajit K. Roy, Brendan O'Toole Aug 2001

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this project is to evaluate the elevated temperature tensile properties of Alloy EP- 823, a leading target material for accelerator-driven waste transmutation applications. This alloy has been proven to be an excellent structural material to contain the lead-bismuth-eutectic (LBE) nuclear coolant needed for fast spectrum operations. However, very little data exist in the open literature on the tensile properties of this alloy. The selection of Alloy EP-823 as the test material in the proposed task is based on the recommendation of our collaborator at the Los Alamos National Laboratory (LANL). The test material will be thermally treated …