Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nuclear Engineering

Cold Atmospheric Pressure Plasmas For Food Applications, Michael V. Lauria, Russell S. Brayfield Ii, Ronald G. Johnson, Allen L. Garner Aug 2016

Cold Atmospheric Pressure Plasmas For Food Applications, Michael V. Lauria, Russell S. Brayfield Ii, Ronald G. Johnson, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

Successfully distributing shelf food requires treatment to eliminate microorganisms. Current chemical methods, such as chlorine wash, can alter food quality while only being effective for a limited time. Cold atmospheric pressure plasmas (CAPs) can eradicate the microorganisms responsible for food spoilage and foodborne illness. Optimizing CAP treatments requires understanding the reactive species generated and relating them to eradication efficiency. Recent studies have used optical emission spectroscopy (OES) to determine the species generated in a sealed package that would hold food. In this study,we supplement the OES results with optical absorption spectroscopy (OAS) using the same gases (helium, nitrogen, compressed air, …


Optical Emission Spectroscopy Diagnostics Of Cold Plasmas For Food Sterilization, Abhijit Jassem, Michael Lauria, Russell Brayfield Ii, Kevin M. Keener, Allen L. Garner Aug 2015

Optical Emission Spectroscopy Diagnostics Of Cold Plasmas For Food Sterilization, Abhijit Jassem, Michael Lauria, Russell Brayfield Ii, Kevin M. Keener, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

There is a growing need for economical, effective, and safe methods of sterilizing fresh produce. The most common method is a chlorine wash, which is expensive and may introduce carcinogens. High voltage cold atmospheric pressure plasmas are a promising solution that has demonstrated a germicidal effect; however, the responsible chemical mechanisms and reaction pathways are not fully understood. To elucidate this chemistry, we used optical emission spectroscopy to measure the species produced in the plasma generated by a 60 Hz pulsed dielectric barrier discharge in a plastic box containing various fill gases (He, N2, CO2, dry …