Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nuclear Engineering

Implementation Of Uncertainty Propagation In Triton/Keno, Charlotta Sanders, Denis Beller Jan 2008

Implementation Of Uncertainty Propagation In Triton/Keno, Charlotta Sanders, Denis Beller

Reactor Campaign (TRP)

Monte Carlo methods are beginning to be used for three dimensional fuel depletion analyses to compute various quantities of interest, including isotopic compositions of used nuclear fuel. The TRITON control module, available in the SCALE 5.1 code system, can perform three-dimensional (3-D) depletion calculations using either the KENO V.a or KENO-VI Monte Carlo transport codes, as well as the two-dimensional (2-D) NEWT discrete ordinates code. To overcome problems such as spatially nonuniform neutron flux and non-uniform statistical uncertainties in computed reaction rates and to improve the fidelity of calculations using Monte Carlo methods, uncertainty propagation is needed for depletion calculations.


Monaco/Mavric Evaluation For Facility Shielding And Dose Rate Analysis, Charlotta Sanders, Denis Beller Jan 2008

Monaco/Mavric Evaluation For Facility Shielding And Dose Rate Analysis, Charlotta Sanders, Denis Beller

Reactor Campaign (TRP)

The dimensions and the large amount of shielding required for Global Nuclear Energy Partnership (GNEP) facilities, advanced radiation shielding, and dose computation techniques are beyond today’s capabilities and will certainly be required. With the Generation IV Nuclear Energy System Initiative, it will become increasingly important to be able to accurately model advanced Boiling Water Reactor and Pressurized Water Reactor facilities, and to calculate dose rates at all locations within a containment (e.g., resulting from radiations from the reactor as well as the from the primary coolant loop) and adjoining structures (e.g., from the spent fuel pool).

The MAVRIC sequence is …


Implementation Of Uncertainty Propagation In Triton/Keno: To Support The Global Nuclear Energy Partnership, Charlotta Sanders, Denis Beller Oct 2007

Implementation Of Uncertainty Propagation In Triton/Keno: To Support The Global Nuclear Energy Partnership, Charlotta Sanders, Denis Beller

Reactor Campaign (TRP)

Monte Carlo methods are beginning to be used for three-dimensional fuel depletion analyses to compute various quantities of interest, including isotopic compositions of used fuel.1 The TRITON control module, available in the SCALE 5.1 code system, can perform three dimensional (3-D) depletion calculations using either the KENO V.a or KENO-VI Monte Carlo transport codes, as well as the two-dimensional (2- D) NEWT discrete ordinates code. For typical reactor systems, the neutron flux is not spatially uniform. For Monte Carlo simulations, this results in non-uniform statistical uncertainties in the computed reaction rates. For spatial regions where the flux is low, e.g., …


Monaco/Mavric Evaluation For Facility Shielding And Dose Rate Analysis: To Support The Global Nuclear Energy Partnership, Charlotta Sanders, Denis Beller Oct 2007

Monaco/Mavric Evaluation For Facility Shielding And Dose Rate Analysis: To Support The Global Nuclear Energy Partnership, Charlotta Sanders, Denis Beller

Reactor Campaign (TRP)

Monte Carlo methods are used to compute fluxes or dose rates over large areas using mesh tallies. For problems that demand that the uncertainty in each mesh cell be less than some set maximum, computation time is controlled by the cell with the largest uncertainty. This issue becomes quite troublesome in deep-penetration problems, and advanced variance reduction techniques are required to obtain reasonable uncertainties over large areas.

In this project the MAVRIC sequence will be evaluated along with the Monte Carlo engine Monaco to investigate its effectiveness and usefulness in facility shielding and dose rate analyses. A previously MCNP-evaluated cask …