Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Masters Theses

Missouri University of Science and Technology

Discipline
Keyword
Publication Year

Articles 1 - 30 of 100

Full-Text Articles in Nuclear Engineering

Validation Of Athlet With Purdue University Multi-Dimensional Integral Test Assembly (Puma) Test, Emin Fatih Ozdem Jan 2024

Validation Of Athlet With Purdue University Multi-Dimensional Integral Test Assembly (Puma) Test, Emin Fatih Ozdem

Masters Theses

"Following the Three Mile Island Unit 2 (TMI-2) disaster, the development of a diagnostic system for emergency situations in a nuclear power plant was identified as an essential research area to strengthen the safety of nuclear power plants. A real-time estimation system of vital safety parameters on the main side of a PWR (Pressurized Water Reactor) facility was investigated since precise post-event scenario estimations are thought to be a crucial component of the diagnostic system. The alarm system of the plant can detect an SB-LOCA (Small Break Loss-Of-Coolant-Accident), but there were a couple of potential long-term transient occurrences. The accident …


Modeling The Reactor Time-Dependent Delayed Particle Tail With Monte Carlo N-Particle (Mcnp) Version 6.2, Eli James Boland Aug 2022

Modeling The Reactor Time-Dependent Delayed Particle Tail With Monte Carlo N-Particle (Mcnp) Version 6.2, Eli James Boland

Masters Theses

"Energy is deposited into experiment packages due to post-shutdown decay heat created from delayed particles. Modeling these delayed particles in a reactor assists researchers in quantifying the expected energy deposition sources to an experiment package before irradiation. This paper focuses on modeling the delayed particles in a reactor in MCNP6.2 by capturing a reactor as a source, converting this source capture to a source definition, applying appropriate physics such as activation and photonuclear interactions, and finally using proper tallies to create the expected delayed particle tail of a reactor.

To capture the source distribution, the FMESH capability within MCNP was …


Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac Jan 2022

Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac

Masters Theses

“Critical experiments are used by nuclear data evaluators and criticality safety engineers to validate nuclear data and computational methods. Many of these experiments are designed to maximize the sensitivity to a certain nuclide-reaction pair in an energy range of interest. Traditionally, a parameter sweep is conducted over a set of experimental variables to find a configuration that is critical and maximally sensitive. As additional variables are added, the total number of configurations increases exponentially and quickly becomes prohibitively computationally expensive to calculate, especially using Monte Carlo methods.

This work presents the development of a particle swarm optimization algorithm to design …


Characterization Of Cermet Fuel For Nuclear Thermal Propulsion (Ntp), James Floyd Mudd Jan 2022

Characterization Of Cermet Fuel For Nuclear Thermal Propulsion (Ntp), James Floyd Mudd

Masters Theses

“A manned flight to Mars is met with many technical challenges, not the least of which is the development of propulsion technology capable of moving a transit vehicle from Earth orbit to Mars orbit. NASA is investigating Nuclear Thermal Propulsion (NTP) as a way of reducing flight time and providing the option for a mid-mission abort. NTP, which uses a high temperature nuclear reactor to heat a propellant, requires advanced fuel materials capable of withstanding temperatures well in excess of 2000 K. Among the fuel options are ceramic metal (cermet) composites composed of refractory metals and Ultra-High Temperature Ceramics (UHTCs). …


Validation Of Athlet-Cd With Cora-28 Test, Murat Tuter Jan 2022

Validation Of Athlet-Cd With Cora-28 Test, Murat Tuter

Masters Theses

“Following the incidents at Chernobyl and Fukushima, severe accidents at nuclear power plants (NPP) have become a global concern. These accidents generally occur because of a failure in the reactor cooling system (RCS) and result in the melting of the reactor core and fission product release. This event is mostly caused by a LOCA, loss of flow accident, station blackout or loss of heat sink. During a severe accident, generation of hydrogen as a result of steam-zircaloy fuel cladding is a significant safety concern. To better understand and prevent the hydrogen generation issue, safety related experiments and safety related codes …


Feasibility Of A Critical Experiment Utilizing Uranium Dioxide-Beryllium Oxide With Neutron Spectrum Shifting Capabilities, Ashley Rachel Raster Jan 2022

Feasibility Of A Critical Experiment Utilizing Uranium Dioxide-Beryllium Oxide With Neutron Spectrum Shifting Capabilities, Ashley Rachel Raster

Masters Theses

“The goal of this project is to determine the feasibility of utilizing Annular Core Research Reactor (ACRR) fuel in core design with Sandia Pulse Reactor Facility’s (SPRF) Seven Percent Critical Experiment (7uPCX) fuel rods as driver fuel for a critical experiment facility to support future critical and benchmark experiments for the International Criticality Safety Benchmark Evaluation Project (ICSBEP) handbook. This is part of the Critical Experiment Design (CED) process for future criticality experiments. These criticality experiment designs have the main goal of being performed in the same facility at different neutron energy ranges. To test the feasibility of this experiment …


Development Of Complex Lattice Cell In Benchmark Model Of Particle Bed Critical System, Elijah Chamberlain Lutz Jan 2021

Development Of Complex Lattice Cell In Benchmark Model Of Particle Bed Critical System, Elijah Chamberlain Lutz

Masters Theses

“Criticality safety benchmark evaluations require the creation of models that most accurately represent the experiment being evaluated. In some cases this can be relatively trivial with experiments containing rather simple or standard geometry. In others, such as packed bed systems, this becomes unique and a more difficult process. The importance of accurate modeling of packed bed systems for the use of criticality safety benchmark evaluations was looked at. Four models were created of various complexities and accuracy. First the multi-particle bed, consisting of a fuel particle (UC1.7 kernel with C shell) and two filler particles (Zircaloy-4 and C + …


Analysis Of Energy Economy In Muon Catalyzed Fusion Considering External X-Ray Reactivation, Nishant Raghav Pillai Jan 2020

Analysis Of Energy Economy In Muon Catalyzed Fusion Considering External X-Ray Reactivation, Nishant Raghav Pillai

Masters Theses

"An analysis of the energy economy of a theoretical muon-catalyzed nuclear fusion system has been made by invoking the use of point kinetic equations, Monte Carlo radiation transport simulations, and from a review of existing literature on muon-catalyzed fusion. An external X-ray reactivation source is proposed as a novel way to increase the number of fusions per muon and thereby overcome the so-called alpha sticking problem that has long been considered the primary impediment to breakeven muon-catalyzed fusion power. Free electron lasers, synchrotrons and Wakefield accelerators are discussed as possible bright X-ray photon sources. The addition of an intense external …


Fuel Burnup Simulation And Analysis Of The Missouri S&T Reactor, Joshua Hinkle Rhodes Jan 2018

Fuel Burnup Simulation And Analysis Of The Missouri S&T Reactor, Joshua Hinkle Rhodes

Masters Theses

"The purpose of this work is to simulate the fuel burnup of the Missouri S&T Reactor. This work was accomplished using the Monte Carlo software MCNP. The primary core configurations of MSTR were modeled and the power history was used to determine the input parameters for the burnup simulation. These simulations were run to determine the burnup for each fuel element used in the core of MSTR.

With these simulations, the new predicted isotopic compositions were added into the model. New core configurations were determined, and the burnup corrected model was used to predict the excess reactivity and control rod …


Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals Jan 2018

Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals

Masters Theses

"This thesis outlines the development of a system used for determining the surface thermal diffusivity of both non-irradiated and irradiated materials. The motivation for this work is to establish a modulated photothermal radiometry (PTR) system on the campus of Missouri University of Science and Technology. One of the main efforts described in this thesis is the design and construction of the physical apparatus. Along the way, it was necessary to perform a detailed sensitivity analysis of the system to determine whether the expected signal emitted from the sample falls within the bounds of detectivity for the HgCdTe (MCT) detector used …


Customized Multi-Group Cross Section Generation With Njoy For Discrete Ordinates Computed Tomography And Radiography Simulation, Steven Michael Wagstaff Jan 2018

Customized Multi-Group Cross Section Generation With Njoy For Discrete Ordinates Computed Tomography And Radiography Simulation, Steven Michael Wagstaff

Masters Theses

"The purpose of this work was to explore the creation of photoatomic multi-group cross section libraries to be used with a software package DOCTORS (Discrete Ordinates Computed TOmography and Radiography Simulator). This software solves the linear Boltzmann equation using the discrete ordinates method [1]. To create these libraries, NJOY2016 was used, creating both fine and broad energy multi-group cross section files. The cross section's accuracy was tested against an equivalent Monte Carlo simulation using MCNP6.

Two simulation geometries were used. The first, a cylindrical water phantom with a single source projection placed in front, simulating an X-ray radiography. The second …


An Investigation Into The Effects Of Ion Tracks On Α-Quartz, Bryant Alan Kanies Jan 2018

An Investigation Into The Effects Of Ion Tracks On Α-Quartz, Bryant Alan Kanies

Masters Theses

"The passage of a swift heavy ion through a material can cause columnar, amorphous nano-structures known as ion tracks. Swift heavy ions are present in a number of applications ranging from nuclear reactors to nuclear waste storage and onboard spacecraft. The study of ion tracks has been ongoing since the late 1950s and has led to several technological advancements. In fact, ion beams have been used to enhance material properties and aid in the production of electrical components. Ion beams, and their resultant ion tracks, can therefore be seen as a method to purposefully alter material properties such as thermal …


Development And Monte Carlo Validation Of A Finite Element Reactor Analysis Framework, Wayne J. Brewster Jan 2018

Development And Monte Carlo Validation Of A Finite Element Reactor Analysis Framework, Wayne J. Brewster

Masters Theses

"This study presents the development and Monte Carlo validation of a continuous Galerkin finite element reactor analysis framework. In its current state, the framework acts as an interface between the mesh preparation software GMSH and the sparse linear solvers in MATLAB, for the discretization and approximation of 1-D, 2-D, and 3-D linear partial differential equations. Validity of the framework is assessed from the following two benchmarking activities: the 2-D IAEA PWR benchmark; and the 2-D Missouri Science and Technology Reactor benchmark proposed within this study. The 2-D IAEA PWR multi-group diffusion benchmark is conducted with the following discretization schemes: linear, …


Cfd Validation And Scaling Of Condensation Heat Transfer, Varun Kalra Jan 2017

Cfd Validation And Scaling Of Condensation Heat Transfer, Varun Kalra

Masters Theses

"A CFD study was performed using STAR-CCM+ to validate the software for its competence in the prediction and scaling of condensation heat transfer in the presence of air acting as a non-condensable gas. Three vertical concentric tube heat exchanger geometries with different diameters were studied in the CFD analysis. It was seen that the steam bulk temperatures predicted by STAR-CCM+ closely matched the experimental data. However, the temperatures of outer wall of the steel condenser tubes showed a deviation of 2% to 11% from the experimental values. The error in adiabatic water wall temperatures were found to range from 18% …


Analysis And Implementation Of Accident Tolerant Nuclear Fuels, Benjamin Joseph Prewitt Jan 2017

Analysis And Implementation Of Accident Tolerant Nuclear Fuels, Benjamin Joseph Prewitt

Masters Theses

"To improve the reliability and robustness of LWR, accident tolerant nuclear fuels and cladding materials are being developed to possibly replace the current UO2/zirconium system. This research highlights UN and U3Si2, two of the most favorable accident tolerant fuels being developed. To evaluate the commercial feasiblilty of these fuels, two areas of research were conducted. Chemical fabrication routes for both fuels were investigated in detail, considering UO2 and UF6 as potential starting materials. Potential pathways for industrial scale fabrication using these methods were discussed.

Neutronic performance of 70%UN-30%U3Si2 composite …


A Study Of The Potential Applications Of Am241, And Determining The Feasibility Of Using Gamma Spectroscopy For Future Physical Validation, Eric A. Feissle Jan 2017

A Study Of The Potential Applications Of Am241, And Determining The Feasibility Of Using Gamma Spectroscopy For Future Physical Validation, Eric A. Feissle

Masters Theses

“Am241 is typically produced via Pu241 decay in a uranium fueled reactor. Presence of Am241 can be used as the age estimation tool for spent fuel, which is a focus of this thesis along with the interest of the measurement and the ratio of production rates of Am241’s activation products; Americium-242 and its first excited state of Americium-242m. MCNP models of the core and BEGe 3825 detector were built. These models were compared with established and physical measurements of gamma/x-ray standards that were available at the reactor. Thermal fluxes at 200 kW for potential foils centered in the source holder …


Comparison Of ²⁵²Cf Time Correlated Induced Fission With Amli Induced Fission On Fresh Mtr Research Reactor Fuel, Jay Prakash Joshi Jan 2017

Comparison Of ²⁵²Cf Time Correlated Induced Fission With Amli Induced Fission On Fresh Mtr Research Reactor Fuel, Jay Prakash Joshi

Masters Theses

"The effective application of international safeguards to research reactors requires verification of spent fuel as well as fresh fuel. To accomplish this goal various nondestructive and destructive assay techniques have been developed in the US and around the world. The Advanced Experimental Fuel Counter (AEFC) is a nondestructive assay (NDA) system developed at Los Alamos National Laboratory (LANL) combining both neutron and gamma measurement capabilities. Since spent fuel assemblies are stored in water, the system was designed to be watertight to facilitate underwater measurements by inspectors. The AEFC is comprised of six 3He detectors as well as a shielded …


The Viability Of Advantg Deterministic Method For Synthetic Radiography Generation, Andrew Albert Bingham Jan 2017

The Viability Of Advantg Deterministic Method For Synthetic Radiography Generation, Andrew Albert Bingham

Masters Theses

"Time sensitive and high resolution image simulations are needed for synthetic radiography generation. The standard stochastic approach requires lengthy run times with poor statistics at higher resolutions. The investigation of the viability of a deterministic approach to synthetic radiography image generation was explored. The aim was to analyze a computational time decrease over the stochastic method. ADVANTG was compared to MCNP in multiple scenarios including a Benchtop CT prototype, to simulate high resolution radiography images. By using ADVANTG deterministic code to simulate radiography images the computational time was found to decrease over 10 times compared to the MCNP stochastic approach"--Abstract, …


Design And Analysis Of A Passive Heat Removal System For A Small Modular Reactor Using Star Ccm+, Raymond Michael Fanning Jan 2017

Design And Analysis Of A Passive Heat Removal System For A Small Modular Reactor Using Star Ccm+, Raymond Michael Fanning

Masters Theses

"Next generation nuclear power plants, specifically small modular reactor designs, are the best alternative to fossil fuels for power generation due to their power density and low carbon emissions and constant awareness of safety concerns. A promising safety feature of new designs is the removal of heat by passive systems in accident scenarios. The passive systems require no moving parts and no intervention by personnel. These systems must be accurately simulated for better understanding of the heat transport phenomena: natural convection cooling. Due to the fact that most work developing these passive heat removal systems are proprietary information, a passive …


Deterministic Simulation Of Thermal Neutron Radiography And Tomography, Rajarshi Pal Chowdhury Jan 2016

Deterministic Simulation Of Thermal Neutron Radiography And Tomography, Rajarshi Pal Chowdhury

Masters Theses

"In recent years, thermal neutron radiography and tomography have gained much attention as one of the nondestructive testing methods. However, the application of thermal neutron radiography and tomography hindered by their technical complexity, radiation shielding, and time-consuming data collection processes. Monte Carlo simulations have been developed in the past to improve the neutron imaging facility's ability. In this present work, a new deterministic simulation approach has been proposed and demonstrated to simulate neutron radiographs numerically using a ray tracing algorithm. This approach has made the simulation of neutron radiographs much faster than by previously used stochastic methods (i.e Monte Carlo …


A Feasibility Study Of A Nuclear Power Plant With No Moving Parts, Jonathan Mark Schattke Jan 2016

A Feasibility Study Of A Nuclear Power Plant With No Moving Parts, Jonathan Mark Schattke

Masters Theses

"In a nuclear reactor design, every moving part in a system is considered a failure point. In this study, a proposal is made for designing a nuclear reactor that has no moving parts by coupling an accelerator driven core (removing control system moving parts) to a magnetohydrodynamic generator (removing power generation moving parts) using mercury coolant (removing pumping system moving parts). Further safety is realized by using a subcritical core, where the core is never able to sustain a chain reaction on its own, obviating many safety systems. The design is verified with a Monte Carlo simulation "--Abstract, page iii.


Thermal Characterization Of Phase Change Materials For Thermal Energy Storage, Rami Mohammad Reda Saeed Jan 2016

Thermal Characterization Of Phase Change Materials For Thermal Energy Storage, Rami Mohammad Reda Saeed

Masters Theses

"The study provides a valuable and useful database for Phase Change Materials (PCMs) for Thermal Energy Storage (TES) applications. Only a few existing studies have provided an overall investigation of thermophysical properties of PCMs in this detailed manner. Several organic PCMs, namely Myristic acid, Capric Acid, Lauryl Alcohol, Palmitic acid and Lauric acid, have been characterized after being carefully selected to cover wide range of TES applications. Insights and information gained from this work will be applied toward the design and modelling of many low temperature thermal energy storage applications. The study experimentally investigated uncertainty of thermal characterization of PCMs …


Synthesis Of Radioactive Nanostructures In A Research Nuclear Reactor, Maria Camila Garcia Toro Jan 2016

Synthesis Of Radioactive Nanostructures In A Research Nuclear Reactor, Maria Camila Garcia Toro

Masters Theses

In this work, the synthesis of radioactive nanostructures by water radiolysis was studied. The irradiation processes were done in the Missouri University of Science and Technology research nuclear reactor (MSTR).

Radioactive gold nanoparticles (AuNPs) were synthesized from aqueous solutions containing the metal salt precursors by radiolysis of water. Seven different samples were irradiated at 200kW of thermal power for 0.5, 1, 3, 5, 10, 30, and 60 minutes. The average sizes of the obtained nanoparticles ranged from 3 nm to 400 nm, it was found that the particle size decreased with the irradiation time. Some agglomerations of particles were found …


Attenuation Properties Of Cement Composites: Experimental Measurements And Monte Carlo Calculations, Raul Florez Jan 2016

Attenuation Properties Of Cement Composites: Experimental Measurements And Monte Carlo Calculations, Raul Florez

Masters Theses

"Developing new cement based materials with excellent mechanical and attenuation properties is critically important for both medical and nuclear power industries. Concrete continues to be the primary choice material for the shielding of gamma and neutron radiation in facilities such as nuclear reactors, nuclear waste repositories, spent nuclear fuel pools, heavy particle radiotherapy rooms, particles accelerators, among others. The purpose of this research was to manufacture cement pastes modified with magnetite and samarium oxide and evaluate the feasibility of utilizing them for shielding of gamma and neutron radiation. Two different experiments were conducted to accomplish these goals. In the first …


Computer Aided Diagnosis Of Oral Cancer: Using Time-Step Ct Images, Jonathan T. Scott Jan 2015

Computer Aided Diagnosis Of Oral Cancer: Using Time-Step Ct Images, Jonathan T. Scott

Masters Theses

"In medical imaging it is a very common practice to use a technique known as Time-Step imaging in patients who might develop cancer. Time-Step imaging it a very powerful technique, however it can lead to unmanageable amounts of image data. Previously the only way to search all of this data was to manually look through all of the files. This had to be done by trained professionals who knew what to look for within the images and make a judgment about the patient based on the images. This paper discusses the development of an algorithm to have a computer search …


Impact Of Configuration Variations On Small Modular Reactor Core Performance, William Kirby Compton Jan 2015

Impact Of Configuration Variations On Small Modular Reactor Core Performance, William Kirby Compton

Masters Theses

"One of the most promising new reactor designs is the Small Modular Reactor (SMR). These reactors, which operate under 300 MWe, will help bring cheap and safe nuclear energy to remote and centralized locations alike. Their ease of construction, advanced passive safety features, and cost effectiveness make these reactors an intriguing option for the near future.

In the work presented here, a neutronics analysis of the Westinghouse SMR was performed. Westinghouse's SMR design is a scaled down version of their AP1000 plant and will produce about 225 MWe of power. Though the parameters of the reactor core will be modeled …


Initial Fuel Possibilities For The Thorium Molten Salt Reactor, Dustin Gage Green Jan 2015

Initial Fuel Possibilities For The Thorium Molten Salt Reactor, Dustin Gage Green

Masters Theses

"The Generation IV International Forum placed six reactors as priority for research and development to compensate for the world's increasing energy demands. Among the six were Molten Salt Reactors (MSRs). These reactors utilize the Th/233U fuel cycle using molten fluoride or chloride salts as coolants. MSRs also have the possibility to use other fissile fuels especially with the first fleet of reactors given the low amount of Uranium-233 available commercially.

With the possibility of diverting from using 233U initially, the research presented here will benchmark 233U as a main fuel for MSRs using the Thorium Molten …


Neutronic Analysis Of Light Water Small Modular Reactor With Flexible Fuel Configurations, Brendan Dsouza Jan 2015

Neutronic Analysis Of Light Water Small Modular Reactor With Flexible Fuel Configurations, Brendan Dsouza

Masters Theses

"The study was focused on the analysis of light water Small Modular Reactor (SMR) with flexible fuel configurations. The core design, based on the Westinghouse UO2 SMR with less than 5% enrichment was developed using the Monte Carlo N-Particle (MCNP) code. Neutronics analyses of a reference core with UO2 fuel was performed to characterize parameters such as the radial neutron flux profile, the maximum to average flux ratio, the reactivity coefficient and critical boron concentration at beginning of life; which confirmed good performance in comparison to a standard UO2 based pressurized water reactor.

Using this uranium oxide …


Computer Aided Detection Of Oral Lesions On Ct Images, Shaikat Mahmood Galib Jan 2015

Computer Aided Detection Of Oral Lesions On Ct Images, Shaikat Mahmood Galib

Masters Theses

"Oral lesions are important findings on computed tomography images. They are difficult to detect on CT images because of low contrast, arbitrary orientation of objects, complicated topology and lack of clear lines indicating lesions. In this thesis, a fully automatic method to detect oral lesions from dental CT images is proposed to identify (1) Closed boundary lesions and (2) Bone deformation lesions. Two algorithms were developed to recognize these two types of lesions, which cover most of the lesion types that can be found on CT images. The results were validated using a dataset of 52 patients. Using non training …


Determination Of Minor And Trace Elements Concentration In Kidney Stones Using Elemental Analysis Techniques, Anjali Srivastava Jan 2014

Determination Of Minor And Trace Elements Concentration In Kidney Stones Using Elemental Analysis Techniques, Anjali Srivastava

Masters Theses

"The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. The X-ray fluorescence (XRF) and neutron activation analysis (NAA) experiments were performed and different kidney stones were analyzed. The interactions of X-ray photons and neutrons with matter are complementary in nature, resulting in distinctly different materials detection. This is the first approach to utilize combined X-ray fluorescence and neutron activation analysis for a comprehensive …