Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Fuels Campaign (TRP)

Nuclear

Keyword
Publication Year

Articles 1 - 30 of 50

Full-Text Articles in Nuclear Engineering

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2008

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert fuels containing ZrO2 and MgO as the inert matrix. Ceramics with this inert matrix, Ce, U and eventually Pu will be synthesized and examined. While the Advanced Fuel Cycle Initiative focus is on inert fuels with Pu as the fissile component, this task will perform initial laboratory experiments with Ce and U. The initial work with Ce will be performed early in the project with results used as a basis for U studies. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf ...


Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Kenneth Czerwinski Jan 2008

Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Kenneth Czerwinski

Fuels Campaign (TRP)

The research objectives are:

• To explore a low-temperature fluoride route to synthesize actinide nitrides. • To characterize actinide nitrides structurally and thermally.

• To use high resolution TEM techniques to explore the microstructure of the radioactive samples.


Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Tyler A. Sullens Jan 2008

Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Tyler A. Sullens

Fuels Campaign (TRP)

One of the original synthetic routes devised for the synthesis of U (III)N involved the entire reaction taking place in liquid ammonia. Several experimental reactions were conducted in an attempt to synthesize the UI3(NH3)x and U(NH2)3(NH3)x precursors of U(III) N. Each attempt involved cleaning of the uranium metal to remove the oxide coating of the metal reagent with 3 washes of concentrated nitric acid, each followed by a rinse with liquid ammonia. Success of this cleaning procedure was varied, with a majority of cleaned metal oxidizing rapidly once ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2007

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert fuels containing ZrO2 and MgO as the inert matrix. Ceramics with this inert matrix, Ce, U and eventually Pu will be synthesized and examined. While the Advanced Fuel Cycle Initiative focus is on inert fuels with Pu as the fissile component, this task will perform initial laboratory experiments with Ce and U. The initial work with Ce will be performed early in the project with results used as a basis for U studies. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf ...


Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Kenneth Czerwinski Jan 2007

Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Kenneth Czerwinski

Fuels Campaign (TRP)

Synthesis of actinium mononitrides using carbothermic reduction of the corresponding oxides has a few outstanding issues, including the formation of secondary phases such as oxides and carbides and low densities of the final product. Furthermore the requirement of a high process temperature at 1700°C, for more than 12 hours is also a drawback particularly for Americium-bearing samples. Therefore, it is important to explore the use of other possible routes to synthesize actinide mononitrides.

A low temperature process is used in this research to produce actinide mononitrides using a fluoride route in which the first step is to mix the ...


Solution-Based Synthesis Of Nitride Fuels, Tyler A. Sullens, Kenneth Czerwinski Jan 2007

Solution-Based Synthesis Of Nitride Fuels, Tyler A. Sullens, Kenneth Czerwinski

Fuels Campaign (TRP)

The preliminary studies into the synthesis of actinide nitride fuels through a low temperature, liquid ammonia based synthesis route have been conducted on the uranium containing system, and there is good indication for the success of synthesizing uranium (III) nitride. The dissolution of iodine in ammonia is a rapid process, resulting in a pale green solution, which does not result in any observable oxidation of iodine. The cannula transfer of dissolved iodine into the reaction vessel containing U metal has been conducted with little to no residual iodine remaining in the original flask. The metal being used for these reactions ...


Dissolution, Reactor, And Environmental Behavior Of Zro 2 -Mgo Inert Fuel Matrix Neutronic Evaluation Of Mgo-Zro2 Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus Jul 2006

Dissolution, Reactor, And Environmental Behavior Of Zro 2 -Mgo Inert Fuel Matrix Neutronic Evaluation Of Mgo-Zro2 Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus

Fuels Campaign (TRP)

In the second year of the “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project initiated and directed by UNLV, the Ben-Gurion University (BGU) group research was focused on the development of practical PWR core nuclear design fully loaded with Reactor Grade (RG) Pu fuel incorporated in fertile free matrix. The design strategy was based on the basic feasibility study results performed at BGU in the Year 1 of the project.


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2006 To March 2006, Kiel Steven Holliday, Thomas Hartmann, Kenneth Czerwinski Mar 2006

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2006 To March 2006, Kiel Steven Holliday, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to provide ...


Crystal Structure And Nano Structure Of Oxide-And Nitride Transmutation Fuel – Refinement Of Transmutation Fuel Processing For Surrogate And Radioactive Fuel Systems: Quarterly Report, January 2006 To March 2006, Chinthaka Silva Mar 2006

Crystal Structure And Nano Structure Of Oxide-And Nitride Transmutation Fuel – Refinement Of Transmutation Fuel Processing For Surrogate And Radioactive Fuel Systems: Quarterly Report, January 2006 To March 2006, Chinthaka Silva

Fuels Campaign (TRP)

Transmutation-related research work at the National Laboratories, e.g. Los Alamos National Laboratory, is focused on mono-nitride ceramic fuel forms, and consists of closely coordinated “hot” actinide and “cold” inert and surrogate fuels work. Matrix and surrogate materials work involves three major components: (1) fuel matrix synthesis and fabrication, (2) fuel performance, and (3) fuel materials modeling. The synthesis and fabrication component supports basic material studies, as well as actinide fuel fabrication work through fuel fabrication process development.

This project, task 28, supports the TRP program by delivering structural data on surrogate and radioactive fuels. Crystal structure and nanostructures of ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2006

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project examines inert fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations are used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics are synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, are investigated in a manner to provide thermodynamic data necessary for modeling ...


Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Thomas Hartmann Jan 2006

Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Thomas Hartmann

Fuels Campaign (TRP)

Advanced Fuel Cycle Initiative research on transmutation fuels includes mono-nitride ceramic fuel forms, and consists of closely coordinated “hot” actinide and “cold” inert and surrogate fuels work. Matrix and surrogate materials work involves three major components: (1) fuel matrix synthesis and fabrication, (2) fuel performance, and (3) fuel materials modeling. The synthesis and fabrication component supports basic material studies, as well as actinide fuel fabrication work through fuel fabrication process development. Fuel performance studies are examining the tolerance of nitride-type fuel to heavy irradiation damage. The fuel materials simulation work involves both atomistic and continuum scale modeling employing first principles ...


Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Thomas Hartmann Jan 2006

Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Thomas Hartmann

Fuels Campaign (TRP)

A wide variety of fuel concepts are considered for advanced reactor technology including metals, metal oxides or metal nitrides as solid solutions or composite materials. Nitride fuels have appropriate properties for advanced fuels including high thermal conductivity, thermal stability, solid-state solubility of actinides, fissile metal density, and suitable neutronic properties. A drawback of nitride fuels involves their synthesis. A key parameter for preparing oxide fuels is the precipitation step in the sol-gel process. For nitride fuels, the current synthetic route is carbothermic reduction from the oxide to the nitride. This process step is based on solid phase reactions and for ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus Jan 2006

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus

Fuels Campaign (TRP)

Various fuel cycle concepts for plutonium incineration in existing PWR loaded with Inert Matrix Fuel (IMF), in which uranium is replaced by neutron-transparent inert matrix material, are currently under investigation at BGU. Some of the studied designs include ZrO2-based IMF with annular fuel geometry and ZrO2-MgO based IMF with the relative amount of MgO varied from 30v/o to 70v/o. These concepts are analyzed via detailed three-dimensional full core simulation of existing PWR including thermal-hydraulic feedback. The whole core simulations are carried out with the SILWER code. The SILWER code, which is a part of ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, April 2005 To June 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski Jun 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, April 2005 To June 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10 % of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to provide thermodynamic ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Shwageraus, A. Galperin, E. Fridman, S. Kolesnikov Jun 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Shwageraus, A. Galperin, E. Fridman, S. Kolesnikov

Fuels Campaign (TRP)

This report presents results of the analysis performed within the framework of “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project managed by University of Nevada at Las Vegas, Harry Reid Center for Environmental Studies. The main objective of the study was to explore the basic neutronic feasibility of using MgO-ZrO2 as inert fuel matrix for Pu recycling in conventional Light Water Reactors (LWR).


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, S. Kolesnikov, E. Shwageraus, A. Galperin May 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, S. Kolesnikov, E. Shwageraus, A. Galperin

Fuels Campaign (TRP)

This report presents the results of the Task 4, defined in working program as: evaluation of reactivity feedback coefficients. Three main parameters of the Fertile-Free Fuel (FFF) lattices were evaluated: Moderator Temperature Coefficient (MTC), Fuel Temperature Coefficient due to Doppler Effect (DC), and soluble Boron reactivity worth (BW).

One of the major design challenges associated with utilization of FFF is deterioration of the temperature coefficients and control materials reactivity worth caused by high thermal cross-section of Pu and consequent hardening of the neutron spectrum. The purpose of the investigation reported in this section is to estimate the potential of addition ...


Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #2, Jamil M. Renno, Georg F. Mauer Apr 2005

Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #2, Jamil M. Renno, Georg F. Mauer

Fuels Campaign (TRP)

This report discusses mainly the fabrication of inert matrix fuels. There are three fabrication routes to obtain inert matrix fuels (IMF). IMF is a dispersion-type fuel in which the actinide phase is distributed as a separate phase in a so called inert matrix. This concept has evolved as one of the most promising in the field of transmutation. The following section discusses each manufacturing route aside.


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2005 To March 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski Mar 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Quarterly Report, January 2005 To March 2005, Earl Wolfram, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

This project will examine inert matrix fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations will be used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics will be synthesized and characterized based on the reactor physics results. The solubility the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, will be investigated in a manner to provide thermodynamic ...


Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Thomas Hartmann, Kenneth Czerwinski Feb 2005

Impact Of The Synthesis Process On Structure Properties For Afci Fuel Candidates, Thomas Hartmann, Kenneth Czerwinski

Fuels Campaign (TRP)

Transmutation work at Los Alamos National Laboratory is currently focused on mono-nitride ceramic fuel forms, and consists of closely coordinated “hot” actinide and “cold” inert and surrogate fuels work. Matrix and surrogate materials work involves three major components: (1) fuel matrix synthesis and fabrication, (2) fuel performance, and (3) fuel materials modeling. The synthesis and fabrication component supports basic material studies, as well as actinide fuel fabrication work through fuel fabrication process development. Fuel performance studies are examining the tolerance of nitride-type fuel to heavy irradiation damage. The fuel materials simulation work involves both atomistic and continuum scale modeling employing ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, S. Kolesnikov, E. Shwageraus, A. Galperin Feb 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, S. Kolesnikov, E. Shwageraus, A. Galperin

Fuels Campaign (TRP)

This report presents the results of the Task 3, defined in working program as: evaluation of burnable poison designs. Adopting the basic design of a standard PWR and Pu loadings required for 18-month cycle (results of Task 2), this part of the program is aimed to estimate performance of each BP design and BP material to address challenges of Fertile-Free Fuel (FFF) Concept. Finally, an optimal BP design will be developed and an overall feasibility of FFF concept will be determined. Basically, the main challenge encountered in neutronic design for a FFF core is to develop reactivity control system which ...


Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #1, Jamil M. Renno, Georg F. Mauer Jan 2005

Design Concepts And Process Analysis For Transmuter Fuel Manufacturing: Quarterly Progress Report #1, Jamil M. Renno, Georg F. Mauer

Fuels Campaign (TRP)

A Hot Cell robotic assembly: Pick and place dynamic simulation, including feedback control with Matlab, was developed for dispersion fuel manufacture.

The deployment of remote manufacturing of transmuter fuel is a necessity for the transmutation applications. In the reporting period, a virtual hot cell for the manufacturing of dispersion fuel was designed using MSC.visualNastran©, ProEngineer© and MATLAB©. Atypical events were successfully simulated. Relevant physical quantities arising during such events were monitored as well.


Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 1st Quarter Report, 2005, Clemens Heske Jan 2005

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 1st Quarter Report, 2005, Clemens Heske

Fuels Campaign (TRP)

In this project we utilize a combination of state-of-the-art soft X-ray spectroscopies to understand the chemical bonding between metal fission products (Pd and Ag) with coating layers in TRISO fuel particles (SiC and pyrocarbon). We are primarily focusing on an analysis of intermediate chemical phases at the interface, the intermixing/diffusion behavior, and the electronic interface structure as a function of material choice (metal and coating materials), temperature, and external stress. In the current first project year, we are beginning these investigations with the Pd/SiC interface, as discussed in the previous two quarterly reports. Our first experiments (both using ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2005

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project examines inert fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations are used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics are synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, are investigated in a manner to provide thermodynamic data necessary for modeling ...


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean Jan 2005

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean

Fuels Campaign (TRP)

The goal of this project is to investigate the casting processes for metallic fuels to help design a process that minimizes the loss of the volatile actinide elements from the fuel. The research effort centers on the development of advanced numerical models to assess conditions that significantly impact the transport of volatile actinides during the melt casting process and represents a joint effort between researchers at UNLV and Argonne National Laboratory (ANL). Assessing critical equipment and process variables is required to build a successful system that will operate efficiently.


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus Oct 2004

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus

Fuels Campaign (TRP)

Second task of the BGU part of “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project aims at evaluation of the fertile free fuel matrix composition effect on the fuel reactivity and corresponding reactivity limited burnup. Fertile free fuel with different MgO to ZrO2 ratio in the matrix will require different PuO2 loading in order to assure certain fuel cycle length. This is due to the fact that absorption cross section of Zr is slightly higher than that of Mg, although absorption in both of these elements is small compared to Pu. Therefore, the ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus Sep 2004

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix: Neutronic Evaluation Of Zro2-Mgo Inert Fuels, E. Fridman, A. Galperin, E. Shwageraus

Fuels Campaign (TRP)

This progress report presents results of analysis performed within the framework of “Dissolution, Reactor, and Environmental Behavior of ZrO2-MgO Inert Fuel Matrix” project managed by University of Nevada at Las Vegas, Harry Reid Center for Environmental Studies.

The BGU working program includes the following four tasks:

1. Benchmark of computational tools

2. Determination of fissile Pu loading

3. Evaluation of burnable poison designs

4. Evaluation of reactivity feedback coefficients

This progress report presents the results of Task 1. The main objective of this task is to confirm the validity of the ELCOS 1 code system for inert matrix ...


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Randy Clarksean, Darrell Pepper Jun 2004

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Randy Clarksean, Darrell Pepper

Fuels Campaign (TRP)

After considering the heating mechanisms, casting issues, crucible design and issues related to the mass transport of americium, an ISM system was selected for melting the feedstock and casting fuel pins containing high vapor pressure actinides (americium). The finite element commercial software (FIDAP) was used to simulate the induction melting process and the casting process. Phase change is considered both in the heating and in the solidification process. Various factors and properties are studied, such as boundary conditions and initial conditions, output current, frequency of the current, main dimensions of the system, mold preheating temperature, heat transfer coefficient and mold ...


Design Concepts And Process Analysis For Transmuter Fuel Manufacturing, Georg F. Mauer May 2004

Design Concepts And Process Analysis For Transmuter Fuel Manufacturing, Georg F. Mauer

Fuels Campaign (TRP)

This proposal addresses the subject heading ‘Transmutation Fuel Development’ in the 2004 research topic list of the UNLV Transmutation Research Program (TRP) and DOE Advanced Fuel Cycle Initiative (AFCI). The large-scale deployment of remote fabrication and refabrication processes (with a capacity of approx. 100 metric tons of Minor Actinides (MA) annually) will be required for all transmutation scenarios. The objective of this project is the design, analysis, and evaluation of manufacturing processes for transmuter fuel fabrication. Fabrication processes for different fuel types differ in terms of equipment types, throughput, and cost. The evaluation of the fabrication processes will create a ...


Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean Jan 2004

Design And Analysis Of A Process For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Yitung Chen, Darrell Pepper, Randy Clarksean

Fuels Campaign (TRP)

The goal of this project is to investigate the casting processes for metallic fuels to help design a process that minimizes the loss of the volatile actinide elements from the fuel. The research effort centers on the development of advanced numerical models to assess conditions that significantly impact the transport of volatile actinides during the melt casting process and represents a joint effort between researchers at UNLV and Argonne National Laboratory (ANL). Assessing critical equipment and process variables is required to build a successful system that will operate efficiently.


Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides: Quarterly Progress Report 5/16/03- 8/15/03, Yitung Chen, Randy Clarksean, Darrell Pepper Aug 2003

Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides: Quarterly Progress Report 5/16/03- 8/15/03, Yitung Chen, Randy Clarksean, Darrell Pepper

Fuels Campaign (TRP)

The analysis of mold filling and solidification continues with progress being made for the consideration of these two features within one model. Analysis of the induction heating process of an Induction Skull Melter (ISM) is under study. Efforts are underway to validate the modeling procedure and specific comparisons are being made to previously published work. Few detailed modeling results have been reported by other researchers, making the validations an important part of the overall modeling process. Skin heating depths, power deposition rates, and other process parameters are being evaluated for use in upcoming furnace design simulations. Efforts are beginning on ...