Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of New Mexico

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 31 - 60 of 84

Full-Text Articles in Nuclear Engineering

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel Jan 2019

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel

Nuclear Engineering ETDs

Renewed interest in molten salt reactor technology has brought to light the need for a better understanding of FLiBe corrosion. To this end a flowing FLiBe corrosion test loop was designed to test the flow effects of FLiBe corrosion. The loop consists of a pump, melt tank, and stainless-steel tubing assembly that heats the molten salt to high temperatures and circulates it over test specimens. The experiment has been constructed and has completed initial shakedown testing.

To support the flowing FLiBe experiment, a numerical corrosion model that couples FLiBe electrochemistry, solid metal diffusion, and mass transport was implemented. The model …


Development Of The University Of New Mexico Spectrometer For High-Resolution Fission Product Yield Data, Richard Emery Blakeley Dec 2018

Development Of The University Of New Mexico Spectrometer For High-Resolution Fission Product Yield Data, Richard Emery Blakeley

Nuclear Engineering ETDs

Well-defined fission product yield data has been of increasing interest in various applications within the nuclear industry. With this need in mind, a fission fragment mass spectroscopy system was designed and developed at the University of New Mexico in collaboration with the Los Alamos National Laboratories with a stated goal of attaining a mass resolution of ≤ 1 % (FWHM/centroid) for light fragments and near 1 % for heavy fragments. The mass spectrometer utilized in this work consists of a transmission time-of-flight detection system to measure fission product velocity and an axial ionization chamber to measure the fission product energy, …


Investigating The Electrodeposition Of Plutonium And Curium For Safeguarding The Electrorefiner, Chantell L. Murphy Dec 2018

Investigating The Electrodeposition Of Plutonium And Curium For Safeguarding The Electrorefiner, Chantell L. Murphy

Nuclear Engineering ETDs

This research investigated the electrochemical deposition behavior of plutonium (Pu) and curium (Cm) for safeguarding the electrorefiner (ER) in a pyroprocessing facility. The main goal of this investigation was to evaluate the feasibility of using a safeguards concept called the neutron balance method to account for Pu in the ER. The neutron balance method relies on a known Pu/Cm ratio and measures neutrons from Cm-244 coming into and leaving a unit operation to track Pu. The application of the neutron balance approach for pyroprocessing facilities requires that Pu and Cm remain together in all extraction, product recovery, and waste streams. …


Investigation Of The Formation Of Γꞌꞌ Precipitates Under Ion Irradiation And Elevated Temperature Environments, James R. Pike Nov 2018

Investigation Of The Formation Of Γꞌꞌ Precipitates Under Ion Irradiation And Elevated Temperature Environments, James R. Pike

Nuclear Engineering ETDs

During a preventative maintenance at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF), a beam window made of solution annealed Alloy 718 was replaced and the old beam window was analyzed. The old beam window underwent mechanical testing and microstructure analysis. During the microstructure analysis, the formation of γꞌꞌ precipitates was observed in Transmission Electron Microscopy (TEM) electron diffraction pattern. The formation of γꞌꞌ precipitates was not expected since they are not stable under irradiation. Furthermore, the formation of γꞌꞌ precipitates was observed only at a temperature of 33ºC, and a dose of 0.7 displacement per atom …


Radiation Transport In Stochastic Media, Corey Skinner Nov 2018

Radiation Transport In Stochastic Media, Corey Skinner

Shared Knowledge Conference

The need to investigate numerical methods for the transport of radiation (thermal photons, light, neutrons, gammas) in random mixtures of immiscible materials arises in numerous applications, including inertial confinement fusion, turbid media (e.g., skin tissue), stellar atmospheres, clouds, and pebble bed nuclear reactors. Stochastic geometry techniques enable rendering of realizations of such random media and deterministic finite difference/finite element as well as Monte Carlo techniques are used to numerically simulate radiation transport on a large ensemble of realizations. The results are then averaged to obtain statistical moments of the radiation intensity, in particular the mean and variance, to assess the …


Comparison Of Steady And Transient Flow Boiling Critical Heat Flux (Chf) For Fecral Accident Tolerant Fuel Cladding Alloy, Zircaloy, And Inconel, Soon Kyu Lee Nov 2018

Comparison Of Steady And Transient Flow Boiling Critical Heat Flux (Chf) For Fecral Accident Tolerant Fuel Cladding Alloy, Zircaloy, And Inconel, Soon Kyu Lee

Shared Knowledge Conference

The nuclear reactor design focuses on building a system that is robust and reliable, is efficient and economical, and do not run into undesirable transient accident scenarios. The nuclear reactor safety focuses on ensuring the system operation under the safety margins and requirements provided by the regulatory agencies. Following the Fukushima nuclear reactor accident, the US Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working to develop fuel and cladding candidates with potentially enhanced accident tolerance: ‘Advanced Tolerant Fuel’ (ATF). As a part of the AFC, this research focuses on gaining mechanistic understanding of the …


Use Of High Fidelity Fission Models In Criticality Calculations, Daniel H. Timmons Nov 2018

Use Of High Fidelity Fission Models In Criticality Calculations, Daniel H. Timmons

Shared Knowledge Conference

The use of Monte Carlo, random number sampling, for neutron transport has been used for about half a century. There are many benchmarks that have been used to validate neutronics codes, mostly for critical systems. Critical systems are systems where the neutron population from one generation to the next is the same. Subcriticality is when there are less neutrons in the next generation and supercriticality is when there are more neutrons in the next generation than there were in the previous. To calculate criticality, a set number of neutrons are started in a system. Those neutrons interact and the number …


Radiation Effects In Metal Oxides And Carbides, Benjamin Jackson Cowen Sep 2018

Radiation Effects In Metal Oxides And Carbides, Benjamin Jackson Cowen

Nuclear Engineering ETDs

MD simulations of SiO2, TiO2, Cr2O3, Al2O3, MgO, and SiC, are performed to: (a) calculate TDE probability distributions and dependence on crystallographic direction, and (b) determine the number and types of defects formed with low- and high-energy PKAs and projectiles. In addition, a qualitative comparison of the MD simulation results of radiation damage in TiO2, MgO, and crystalline and amorphous SiC thin films are compared with those of in situ TEM ion beam irradiation experiments at the Sandia National Laboratories’ I3TEM facility.

The TDE …


Sonomechanical Enhanced Sparging Techniques For Advanced Reactor Applications, Floren V. Rubio Jul 2018

Sonomechanical Enhanced Sparging Techniques For Advanced Reactor Applications, Floren V. Rubio

Nuclear Engineering ETDs

The fluoride salt cooled high temperature reactor (FHR) is a Generation IV advanced reactor design that has potential to produce efficient, low carbon, and safe energy. But, there are significant engineering challenges that need to be addressed before the deployment of this reactor. One of the key challenges is tritium release mitigation and sequestration. Because the FHR utilizes a eutectic LiF-BeF2 (flibe) salt as a coolant, the coolant is a significant source of tritium.

High-power ultrasonics have been used in many industrial process streams such as food processing, metal production, chemical production, and pharmaceutical manufacturing. Techniques and concepts from these …


Analysis Of Double-Wall And Twisted-Tube Heat Exchanger Concepts For Use In Fluoride Salt-Cooled High-Temperature Reactors, Bryan M. Wallace May 2018

Analysis Of Double-Wall And Twisted-Tube Heat Exchanger Concepts For Use In Fluoride Salt-Cooled High-Temperature Reactors, Bryan M. Wallace

Nuclear Engineering ETDs

Fluoride Salt-cooled High-temperature Reactors (FHRs) are an attractive fourth generation reactor concept. Like other fourth generation concept designs, FHRs offer characteristics such as a high-temperature low-pressure molten salt coolant allowing the reactor to be combined with a high-temperature high-efficiency power generation cycle such as an air-Brayton or supercritical carbon dioxide (SCO2). \par

Like most Gen IV reactor concepts, there are a few problems which need to be addressed with the design before it can be licensed. One particular design is the Mark 1 pebble bed FHR, a design put out by the University of California Berkeley. Two problems that need …


Design And Characterization Of Systems For Direct Spatial Imaging Of Low-Energy Gamma-Radiation Sources, Phoenix Baldez Apr 2018

Design And Characterization Of Systems For Direct Spatial Imaging Of Low-Energy Gamma-Radiation Sources, Phoenix Baldez

Nuclear Engineering ETDs

This work describes the development of radiation detection systems to identify and image special nuclear material (SNM) using low energy gamma rays. The imaging of these materials is crucial for timely, in the field responses to potential threats to national security. Using a spectroscopy system, the sources can be identified while images can be produced concurrently for the sources which are present. Two systems were designed and characterized in this study, a collimated imager which used collimation in front of a small CdTe detector, and a pixelated pinhole imager, using a pinhole mask in front of a pixelated CZT detector. …


An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter Apr 2018

An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter

Nuclear Engineering ETDs

Modern ultraviolet (UV) cameras, when combined with UV-transmitting lenses/filter arrangements, can be used to detect radiation dose in air. Ionizing radiation excites nitrogen molecules in ambient air, the resulting decay includes weak emission of ultraviolet photons. Previous work has proven this phenomenon is detectable using highly-sensitive electronically cooled cameras traditionally used in astronomy for low-background imaging. While the ability to detect the presence of radiation (i.e. qualitative measurement) has been demonstrated at Sandia National Laboratories, there are several challenges in correlating images to known dose-fields (quantitative measurement). These challenges include: a low signal to background ratio, interferences due to electronic …


Patient Specific Radiation Doses From Projection Radiography Images: Improving The Accuracy Of Low Dose Radiation Calculations, Daniel J. Sandoval Apr 2018

Patient Specific Radiation Doses From Projection Radiography Images: Improving The Accuracy Of Low Dose Radiation Calculations, Daniel J. Sandoval

Nuclear Engineering ETDs

Due to an increase in regulatory scrutiny and medical facility accreditation requirements to monitor patient radiation dose from diagnostic imaging procedures, there is a growing necessity to determine and record accurate patient radiation dose from diagnostic medical imaging procedures. Current methods of patient dosimetry in diagnostic imaging are both extremely difficult and time consuming, require large computing resources (such as Monte Carlo computations), or lack accuracy due to using data based on homogeneous materials and “standard-man sized” anthropomorphic models.

This dissertation provides an algorithm that calculates a more accurate dose using patient-specific projection radiographic images. The algorithm includes measurements acquired …


Development Of A Novel Framework For The Application Of Signature Based Safeguards (Sbs) To Pyroprocessing, Philip Leo Lafreniere Mar 2018

Development Of A Novel Framework For The Application Of Signature Based Safeguards (Sbs) To Pyroprocessing, Philip Leo Lafreniere

Nuclear Engineering ETDs

Traditional nuclear material accountancy (NMA) faces several challenges when applied to pyroprocessing facilities. To address these challenges, alternative methods of safeguarding nuclear material are being developed. One method is process monitoring (PM). PM involves taking operational process data and applying it to safeguards using an advanced framework. Signature Based Safeguards (SBS), a proposed PM framework, involves the identification of anomalous scenarios and the subsequent identification and detection of their respective PM signatures from a system of measurements. SBS has previously focused on failure modes that result in transfer of mass to unexpected places in the mass flowsheet. This work developed …


The Inverse Kinetics Method And Its Application To The Annular Core Research Reactor, Thomas A. Ball Nov 2017

The Inverse Kinetics Method And Its Application To The Annular Core Research Reactor, Thomas A. Ball

Nuclear Engineering ETDs

The inverse kinetics method, is a method to calculate a reactor’s reactivity profile from its power profile. In this thesis, the reactivity profile corresponding to pulse operations of the Annular Core Research Reactor (ACRR) was sought. Of specific interest was the shutdown reactivity of the reactor following the pulse. This required accounting for delayed beryllium photoneutrons that are present in the ACRR in addition to U-235 delayed neutron precursors. The power profiles of the pulses were experimentally measured using a diamond photoconductive detector (PCD). Using the inverse kinetics equation, a computer code was written to numerically calculate the reactivity corresponding …


Evaluation Of Energy Released From Nuclear Criticality Excursions In Process Solutions, Corey Michael Skinner Nov 2017

Evaluation Of Energy Released From Nuclear Criticality Excursions In Process Solutions, Corey Michael Skinner

Nuclear Engineering ETDs

Typically, the staff of a nonreactor nuclear facility or a processing facility involving nuclear material are not expected to have a strong technical background in nuclear criticality physics, as that is not the purpose of these sites, yet handle material with the potential to undergo a criticality excursion. Such excursions have occurred 22 times in the past, 21 of which involved an aqueous solution material. Therefore, it would be useful to have a general model capable of providing a quick estimation of the consequences of a criticality excursion in a processing plant. To this end, correlations developed utilizing experimental data …


Time-Of-Flight And Energy Loss Analysis On The Unm Fission Fragment Spectrometer, Shelby Fellows Oct 2017

Time-Of-Flight And Energy Loss Analysis On The Unm Fission Fragment Spectrometer, Shelby Fellows

Nuclear Engineering ETDs

The University of New Mexico spectrometer experimental work has been used to provide an event-by-event fission product measurement to aid in filling in the gaps in existing fission product yield data, as part of the Los Alamos National Lab Spectrometer for Ion Detection in Fission Research project (SPIDER) collaboration. This thesis examines the time-of-flight (TOF) component of the spectrometer towards improving the resolution of the system. Different thicknesses of TOF conversion foils were examined with alpha particles and fission fragments: 20, 55, and 100 µg/cm2 carbon foils. For the thinnest carbon foil studied, a timing resolution of 160 ps …


Asymptotic Neutronic Solutions For Fast Burst Reactor Design, Edward L. Hobbs Oct 2017

Asymptotic Neutronic Solutions For Fast Burst Reactor Design, Edward L. Hobbs

Nuclear Engineering ETDs

Deterministic numerical methodologies for solving time-eigenvalue problems are valuable in characterizing the inherent rapid transient neutron behavior of a Fast Burst Reactor (FBR). New nonlinear solution techniques used to solve eigenvalue problems show great promise in modeling the neutronics of reactors. This research utilizes nonlinear solution techniques to solve for the dominant time-eigenvalue associated with the asymptotic (exponential) solution to the neutron diffusion and even-parity form of the neutron transport equation, and lays the foundation for coupling with other physics phenomena associated with FBRs.

High security costs and proliferation risks associated with Highly Enriched Uranium (HEU) fueled FBRs are the …


Evaluation And Enhancement Of Clean Energy Systems: Analytical, Computational And Experimental Study Of Solar And Nuclear Cycles, Nima Fathi Jul 2017

Evaluation And Enhancement Of Clean Energy Systems: Analytical, Computational And Experimental Study Of Solar And Nuclear Cycles, Nima Fathi

Mechanical Engineering ETDs

Clean (and specifically renewable) energy is steadily improving its global share. However, finite availability of fossil fuels and the growing effects of climate change make it an urgent priority to convince the industry and governments to incentivize investment in the renewable energy field and to make it more attractive by decreasing the capital cost. Until recently, uncertainties in funding limited renewable energy development, especially in the US. That limitation has been one of the barriers to progress. Another limitation of many renewable energy systems is the variability in their output, which makes them unsuitable for baseline power production. Therefore, fossil …


Time And Energy Characterization Of A Neutron Time Of Flight Detector Using A Novel Coincidence Method For Constraining Neutron Yield, Ion Temperature And Liner Density Measurements From Maglif Experiments, Jedediah Styron Jul 2017

Time And Energy Characterization Of A Neutron Time Of Flight Detector Using A Novel Coincidence Method For Constraining Neutron Yield, Ion Temperature And Liner Density Measurements From Maglif Experiments, Jedediah Styron

Nuclear Engineering ETDs

The focus of this work is the characterization of a typical neutron time-of-flight (NTOF) detector that is fielded on inertial confinement fusion (ICF) experiments conducted at the Z-experimental facility with emphasis on the Magnetized Liner Fusion (MagLIF) concept. An NTOF detector consisting of EJ-228 scintillator and two independent photomultiplier tubes (PMTs), a Hamamatsu-mod 5 and Photek-PMT240, has been characterized in terms of the absolute time and energy response. The characterization was done by measuring single, neutron-induced events in the scintillator by measuring the alpha particle and neutron produced from the D-T reaction in kinematic coincidence. The results of these experiments …


Examination Of Color Center Formation In Caf2 Crystals When Exposed To Gamma And Mixed Neutron/Gamma Fields, Sara M. Pelka Jul 2017

Examination Of Color Center Formation In Caf2 Crystals When Exposed To Gamma And Mixed Neutron/Gamma Fields, Sara M. Pelka

Nuclear Engineering ETDs

Color centers in CaF2 were studied in this work, in parallel with examinations of changes in the refractive index of the crystals by the larger research group, after they were subjected to radiation. Color centers induced by gamma rays and in mixed neutron-gamma fields were studied in CaF2 and LiF using transmittance and absorbance spectra. The goals were to examine both neutron and neutron-gamma mixed field irradiations to be able to isolate neutron only effects and to correlate these color center effects with refractive index effects studied by our larger collaboration. Irradiation sources include 137Cs, DD and …


High Precision Refractive Index Measurement Techniques Applied To The Analysis Of Neutron Damage And Effects In Caf2 Crystals, Joseph P. Morris Ph.D. Jul 2017

High Precision Refractive Index Measurement Techniques Applied To The Analysis Of Neutron Damage And Effects In Caf2 Crystals, Joseph P. Morris Ph.D.

Nuclear Engineering ETDs

Neutron irradiation damages material by atomic displacements. The majority of these damage regions are microscopic and difficult to study, though they can cause a change in density and thus a change in refractive index in transparent materials. This work utilized CaF2 crystals to track refractive index change based on neutron radiation dose. High precision refractive index measurements were performed utilizing a nested-cavity mode-locked laser where the CaF2 crystal acted as a Fabry-Pérot Etalon (FPE). By comparing the repetition rate of the cavity and the repetition rate of the FPE, refractive index change was determined. Following several irradiation experiments, …


Experimental And Computational Investigations Of Heat Transfer Systems In Fluoride Salt-Cooled High-Temperature Reactors, Joel T. Hughes Apr 2017

Experimental And Computational Investigations Of Heat Transfer Systems In Fluoride Salt-Cooled High-Temperature Reactors, Joel T. Hughes

Nuclear Engineering ETDs

Fluoride salt-cooled high-temperature reactors (FHRs) face a number of challenges similar to those faced by other Generation IV advanced reactor concepts. Predicting heat transfer in these systems accurately and reliably is one major challenge. Another is ensuring the safety of these systems during challenging operating conditions across the design basis envelope. Finally, achieving good economics to compete in a modern power generation portfolio is necessary for moving any nuclear power plant concept past the pre-conceptual stage. This dissertation attempts to support, from a thermal-hydraulics research standpoint, the case that the FHR can attain these goals. The dissertation focuses on several …


Remote Handled Disposal Enhancement At The Waste Isolation Pilot Plant, Philip Theisen Feb 2017

Remote Handled Disposal Enhancement At The Waste Isolation Pilot Plant, Philip Theisen

Nuclear Engineering ETDs

The Waste Isolation Pilot Plant (WIPP) is a deep underground facility for the disposal of Transuranic Defense Waste located in Southeastern New Mexico. Transuranic (TRU) Waste is defined as any radionuclides with an atomic number greater than that of Uranium, has a half-life greater than 20 years, and activity greater than 100nanocuries. According to the ‘Land Withdrawal Act’ (LWA), WIPP is licensed to dispose of 6.2million cubic feet of waste. TRU waste is categorized into two types: Contact Handled (CH) and Remote Handled (RH). CH waste is any waste that does not have a surface dose rate that exceeds 200mrem …


An Ionization Chamber For High Resolution Fission Product Spectroscopy, James Cole Dec 2016

An Ionization Chamber For High Resolution Fission Product Spectroscopy, James Cole

Nuclear Engineering ETDs

The fission process has played a vital role in the world’s search for effective sources of alternative energy. With almost 80 years of work with fissionable material there is still much that is unknown about the process. Fission fragment mass and atomic number distributions are still lacking in completeness and critical detail. Knowledge of this information is highly sought after in the effort to improve various fields of nuclear physics and engineering such as reactor design, predictive models, waste disposal methods, and an overall understanding of the fission process. In an effort to better understand this process, we have developed …


Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies And Continuous-Energy Cross Sections In Mcnp6, Matthew A. Gonzales Dec 2016

Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies And Continuous-Energy Cross Sections In Mcnp6, Matthew A. Gonzales

Nuclear Engineering ETDs

The calculation of the thermal neutron Doppler temperature reactivity feedback co- efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective tem- perature derivatives within the system in order to accurately calculate the Doppler temperature feedback.

A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) …


Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan Nov 2016

Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan

Nanoscience and Microsystems ETDs

Infrared (IR) hybrid detector arrays and discrete detectors operated in the space environment may be subjected to a variety of sources of natural radiation while in orbit. This means IR detectors intended for applications such as space-based intelligence, surveillance, and reconnaissance (ISR) or space-situational awareness (SSA) must not only have high performance (high quantum efficiency, h and low dark-current density, JD, and preferably minimal 1/f noise content), but also their radiation tolerance or ability to withstand the effects of the radiation they would expect to encounter in space must be characterized and well understood. As the effects of …


Fokker-Planck-Based Acceleration For Sn Equations With Highly Forward Peaked Scattering In Slab Geometry, Japan K. Patel Nov 2016

Fokker-Planck-Based Acceleration For Sn Equations With Highly Forward Peaked Scattering In Slab Geometry, Japan K. Patel

Nuclear Engineering ETDs

Short mean free paths are characteristic of charged particles. High energy charged particles often have highly forward peaked scattering cross sections. Transport problems involving such charged particles are also highly optically thick. When problems simultaneously have forward peaked scattering and high optical thickness, their solution, using standard iterative methods, becomes very inefficient. In this dissertation, we explore Fokker-Planck-based acceleration for solving such problems.


Advanced Stochastic Collocation Methods For Polynomial Chaos In Raven, Paul W. Talbot Nov 2016

Advanced Stochastic Collocation Methods For Polynomial Chaos In Raven, Paul W. Talbot

Nuclear Engineering ETDs

As experiment complexity in fields such as nuclear engineering continually increases, so does the demand for robust computational methods to simulate them. In many simulations, input design parameters and intrinsic experiment properties are sources of uncertainty. Often small perturbations in uncertain parameters have significant impact on the experiment outcome. For instance, in nuclear fuel performance, small changes in fuel thermal conductivity can greatly affect maximum stress on the surrounding cladding. The difficulty quantifying input uncertainty impact in such systems has grown with the complexity of numerical models. Traditionally, uncertainty quantification has been approached using random sampling methods like Monte Carlo. …


Reduced-Order Monte Carlo Modeling Of Radiation Transport In Random Media, Aaron J. Olson Nov 2016

Reduced-Order Monte Carlo Modeling Of Radiation Transport In Random Media, Aaron J. Olson

Nuclear Engineering ETDs

The ability to perform radiation transport computations in stochastic media is essential for predictive capabilities in applications such as weather modeling, radiation shielding involving non-homogeneous materials, atmospheric radiation transport computations, and transport in plasma-air structures. Due to the random nature of such media, it is often not clear how to model or otherwise compute on many forms of stochastic media. Several approaches to evaluation of transport quantities for some stochastic media exist, though such approaches often either yield considerable error or are quite computationally expensive. We model stochastic media using the Karhunen-Loève (KL) expansion, seek to improve efficiency through use …