Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nuclear Engineering

Knowledge-Based Information Resource Management System For Materials Of Sodium-Cooled Fast Reactor, Sean Hsieh Jan 2008

Knowledge-Based Information Resource Management System For Materials Of Sodium-Cooled Fast Reactor, Sean Hsieh

Reactor Campaign (TRP)

In the development of advanced fast reactors, materials and coolant/material interactions pose a critical barrier for higher temperature and longer core life designs. For advanced burner reactors (sodium cooled) such as EBR-II and FFTF, experience has shown that the qualified structural materials and fuel cladding severely limits the economic performance. In other liquid metal cooled reactor concepts, advanced materials and better understanding and control of coolant and materials interactions are necessary for realizing the potentials.

Liquid sodium has been selected as the primary coolant candidate for Gen. IV nuclear energy systems. Global Nuclear Partnership (GNEP) Advanced Burned Reactor (ABR) has …


Thermal Transient Flow Rate Sensor For High Temperature Liquid Metal Cooled Nuclear Reactor, Yingtao Jiang, Jian Ma Jan 2008

Thermal Transient Flow Rate Sensor For High Temperature Liquid Metal Cooled Nuclear Reactor, Yingtao Jiang, Jian Ma

Reactor Campaign (TRP)

In nuclear power plants and accelerator driven systems (ADS) for nuclear waste treatment, it is important to monitor the coolant flow rate in the reactor core and pipe-line. In such a strong irradiation, high pressure, and temperature environment, the existing flow measurement techniques (such as Electromagnetic flow meters, Ultrasonic flow meters, Turbine flow meters, etc.) are not accurate and reliable.

The measurement of flow rates (mass flow rates or volume flow rate) plays a notable role in monitoring and controlling the experimental conditions. The bulk flow rates can be obtained through direct methods, which measure the amount of discharged fluids …


Modeling And Design Algorithms For Electromagnetic Pumps, Daniel P. Cook, Yitung Chen, Jian Ma Jan 2008

Modeling And Design Algorithms For Electromagnetic Pumps, Daniel P. Cook, Yitung Chen, Jian Ma

Reactor Campaign (TRP)

Electromagnetic (EM) induction pumps are used extensively in current and proposed nuclear power systems and industrial molten metal transfer operations. Although the Magnetohydrodynamic (MHD) theory that underlies the operation of these types of pumps has been studied extensively in the past few decades, the design of specific EM pumping systems for specific flow cases requires computational tools and expertise, which is lacking in the U.S. However, for the past two years, researchers at UNLV have been utilizing the TC-1 liquid metal loop system at UNLV and an Annular Linear Induction Pump (ALIP) to drive the liquid metal and to develop …


Knowledge-Based Information Resource Management System For Materials Of Sodium-Cooled Fast Reactor, Sean Hsieh Jan 2008

Knowledge-Based Information Resource Management System For Materials Of Sodium-Cooled Fast Reactor, Sean Hsieh

Reactor Campaign (TRP)

In the development of advanced fast reactors, materials and coolant/ material interactions pose a critical barrier for higher temperature and longer core life designs. For sodium-cooled fast reactors (SFRs) such as the Experimental Breeder Reactors in Idaho and the Fast Flux Test Facility in Hanford, experience has shown that qualified structural materials and fuel cladding severely limits their economic performance.

Liquid sodium has been selected as the primary coolant candidate for the Advanced Burner Reactor (ABR) of the Global Nuclear Partnership (GNEP). Materials improvement has been identified as a major thrust to improve fast reactor economics. Researchers from universities, national …


Modeling And Design Algorithms For Electromagnetic Pumps, Daniel P. Cook Jan 2007

Modeling And Design Algorithms For Electromagnetic Pumps, Daniel P. Cook

Reactor Campaign (TRP)

Electromagnetic (EM) induction pumps are used in a number of nuclear energy related applications, such as circulation of molten lead-bismuth eutectic alloys in neutron targets, and circulation of liquid sodium metal in Gen IV Sodium-cooled Fast Reactors (SFR). Because EM pumps have no moving parts which can fail, they are considerably more reliable than conventional mechanical pumps for molten metal usage, and thus EM pumps are favored over mechanical pumps even though their pumping efficiency is lower and their initial cost is higher when compared to mechanical pumps of similar flow rates.

The research objectives of this task are:

  • A …


Thermal Transient Flow Rate Sensor For High Temperature Liquid Metal Cooled Nuclear Reactor, Yingtao Jiang Jan 2007

Thermal Transient Flow Rate Sensor For High Temperature Liquid Metal Cooled Nuclear Reactor, Yingtao Jiang

Reactor Campaign (TRP)

In nuclear power plants and accelerator driven system (ADS) for nuclear waste treatment, it is important to monitor the coolant flow rate in the reactor core and pipe-line. In such a strong irradiation, high pressure and temperature environment, no accurate local flow measurement technique is readily available. Electromagnetic (EM) flow meter is popular in low temperature application as it is a non-intrusive technology. However, additional voltage will be produced due to temperature, flow, pressure, the chemical properties of the liquid metal and surface condition of the steel walls. In addition, the non-definite wetting behavior of liquid lead-bismuth to the electrically …


Magnetohydrodynamic Simulation Of Electromagnetic Pump In Tc-1, Lillian J. Ratliff Jan 2006

Magnetohydrodynamic Simulation Of Electromagnetic Pump In Tc-1, Lillian J. Ratliff

Reactor Campaign (TRP)

The pilot molten lead-bismuth target circuit (TC-1) in university of Nevada Las Vegas (UNLV) was designed for beam power of 1 MW accelerator driven system (ADS). The TC-1 is a liquid lead-bismuth eutectic (LBE) circulation loop. Circulation of the liquid alloy is driven by an annular linear induction pump (ALIP). Experimental measurements of system parameters have yielded a surprisingly low pump efficiency of less than 1%. A numerical study of the pump efficiency is being conducted to determine which operational parameters are responsible for this low efficiency and to give insight into future EM pump design. The numerical study will …