Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

University of Nevada, Las Vegas

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 356

Full-Text Articles in Nuclear Engineering

Viability Of Energy And Fuel Sources For Interstellar Travel; Design And Feasibility Of The Construction Of Manned Interstellar Space Shuttles, Lukas Mittelman May 2022

Viability Of Energy And Fuel Sources For Interstellar Travel; Design And Feasibility Of The Construction Of Manned Interstellar Space Shuttles, Lukas Mittelman

UNLV Theses, Dissertations, Professional Papers, and Capstones

The importance of proving the viability of interstellar transport and addressing its potential hazards and pitfalls is immense. If we do not look toward the future and examine what could be waiting for us, we are doing our children, our children’s children, and so on, a disservice. Here we must attempt to lay the groundwork for our future scientists, engineers, and adventurers. Asking and answering questions like, which propulsion and energy systems must we incorporate to send us through the cosmos? Will we utilize technologies known today, such as fossil fuel rockets, fission or fusion rockets, and antimatter drives (pion …


Fast Neutron Assay Of Elemental Content Of Bulk Samples, Calder Emerson Lane Dec 2020

Fast Neutron Assay Of Elemental Content Of Bulk Samples, Calder Emerson Lane

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this research was to analyze the capabilities of fast neutrons in the detection and analysis of various isotopes in bulk samples. The deuterium-tritium (DT) fusion reaction generates highly penetrating, high-energy (14.1-MeV) neutrons which induce nuclear reactions in irradiated targets. Neutrons and gamma rays are generated in these reactions. Emitted gamma rays are characteristic of the emitter; the gamma spectrum enables stoichiometric identification of the assayed samples. Neutron backscattering can also be used for identification of the elemental composition of the sample.

This work had three objectives. The first objective was to develop a computational technique to model …


Fast Neutron Detection In Nuclear Material Photofission Assay Using A 15 Mev Linear Electron Accelerator, Matthew Steven Hodges May 2017

Fast Neutron Detection In Nuclear Material Photofission Assay Using A 15 Mev Linear Electron Accelerator, Matthew Steven Hodges

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this research was to use a 15 MeV (K15 model by Varian) linear electron accelerator (linac) for the photon assay of special nuclear materials (SNM). First, the properties of the photon radiation probe were determined. The stochastic radiation transport code, MCNP5, was used to develop computational models for the linac. The spectral distribution of photons as well as dose rate contour maps of the UNLV accelerator facility were computed for several linac operating configurations. These computational models were validated through comparison with experimental measurements of dose rates.

The linac model was used to simulate the photon interrogation …


Neutron-Gamma Discrimination In Elpasolite Scintillator Detector, Brittany Morgan May 2016

Neutron-Gamma Discrimination In Elpasolite Scintillator Detector, Brittany Morgan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Existing nuclear stockpiles and weapons-making capabilities imperil the global community. Current nonproliferation efforts involve the research and development of newer, more efficient detection systems that can be deployed for the interdiction and monitoring of special nuclear materials (SNM). Spontaneous and induced fission events in SNM produce neutrons and gamma rays, which can be detected and analyzed, in particular, using scintillator detectors. Various electronic data acquisition systems and data analysis methods have been employed to record and characterize neutron and photon signatures. The goal of this thesis is to develop a new method of discrimination between neutrons and photons in the …


Mcnp6 Computational-Based Sensitivity Propagation Analysis Of Continuous Neutron Cross-Sections Using The Godiva (Hmf-001) And The Godiver (Hmf-004) Benchmark Criticality Study Cases, Lawrence James Lakeotes May 2016

Mcnp6 Computational-Based Sensitivity Propagation Analysis Of Continuous Neutron Cross-Sections Using The Godiva (Hmf-001) And The Godiver (Hmf-004) Benchmark Criticality Study Cases, Lawrence James Lakeotes

UNLV Theses, Dissertations, Professional Papers, and Capstones

There has been a reduction in funding for theoretical and applied research for improving the nation's database of continuous neutron cross-sections at BNL-NNDC. From 1940 through the late 1980s, research and applied development produced volumes of reliable neutron continuous cross-sections for many isotopes. Currently, the cross-section work has been mainly computational. The focus of this research is mainly centered on the requirements for improving thermal cross-sections to support reactor operations and fuel storage. The research efforts will also helpfully aid in the fast fission spectrum in order to support fast reactor designs for improving safety analysis and feedback coefficients.

This …


Time Correlated Measurements Using Plastic Scintillators With Neutron-Photon Pulse Shape Discrimination, Norman Edison Richardson May 2014

Time Correlated Measurements Using Plastic Scintillators With Neutron-Photon Pulse Shape Discrimination, Norman Edison Richardson

UNLV Theses, Dissertations, Professional Papers, and Capstones

Since the beginning of the nuclear age, there has been a strong demand for the development of efficient technologies for the detection of ionizing radiation. According to the United States' Department of Energy, the accurate assessment of fissile materials is essential in achieving the nonproliferation goals of enhancing safety and security of nuclear fuel cycle and nuclear energy facilities [1]. Nuclear materials can be characterized by the measurement of prompt and delayed neutrons and gamma rays emitted in spontaneous or induced fission reactions [2] and neutrons emitted in fission reactions are the distinctive signatures of nuclear materials. Today, the most …


Assessing Different Zeolitic Adsorbents For Their Potential Use In Kr And Xe Separation, Breetha Alagappan Dec 2013

Assessing Different Zeolitic Adsorbents For Their Potential Use In Kr And Xe Separation, Breetha Alagappan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Separation of Kr from Xe is an important problem in spent nuclear fuel fission gas management. The energy intensive and expensive cryogenic distillation method is currently used to separate these gases. In this thesis, we have carried out the research into appropriate sorbents for the separation of Kr and Xe using pressure swing adsorption. We have examined zeolites using gas adsorption studies as they have the potential to be more cost effective than other sorbents. Zeolites are microporous aluminosilicates and have ordered pore structures. The pores in zeolites have extra-framework cations are substantially free to move. The mobility of cations …


Criticality And Characteristic Neutronic Analysis Of A Transient-State Shockwave In A Pulsed Spherical Gaseous Uranium-Hexafluoride Reactor, Jeremiah Boles Dec 2013

Criticality And Characteristic Neutronic Analysis Of A Transient-State Shockwave In A Pulsed Spherical Gaseous Uranium-Hexafluoride Reactor, Jeremiah Boles

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this study is to analyze the theoretical criticality of a spherical uranium-hexafluoride reactor with a transient, pulsed shockwave emanating from the center of the sphere in an outward-radial direction. This novel nuclear reactor design, based upon pulsed fission in a spherical enclosure is proposed for possible use in direct energy conversion, where the energy from fission products is captured through the use of electrostatic fields or through induction. An analysis of the dynamic behavior of the shockwave in this reactor is the subject of this thesis. As a shockwave travels through a fluid medium, the characteristics of …


Novel Production Techniques Of Radioisotopes Using Electron Accelerators, Daniel Robert Lowe Dec 2012

Novel Production Techniques Of Radioisotopes Using Electron Accelerators, Daniel Robert Lowe

UNLV Theses, Dissertations, Professional Papers, and Capstones

Non-traditional radioisotope production techniques using a compact, high power linear electron accelerator have been demonstrated and characterized for the production of 18F, 47Sc, 147Pm, and 99mTc from a variety of target candidates. These isotopes are used extensively in the medical field as diagnostic and therapy radioisotopes, as well as the space industry as RTG's. Primary focus was placed on 99mTc as it constitutes approximately 80% of all diagnostic procedures in the medical community that use radioactive tracers. It was also the prime focus due to recent events at the Chalk River nuclear reactor, which caused global shortages of this isotope …


Quantification Of Stochastic Uncertainty Propagation For Monte Carlo Depletion Methods In Reactor Analysis, Quentin Thomas Newell Dec 2011

Quantification Of Stochastic Uncertainty Propagation For Monte Carlo Depletion Methods In Reactor Analysis, Quentin Thomas Newell

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Monte Carlo method provides powerful geometric modeling capabilities for large problem domains in 3-D; therefore, the Monte Carlo method is becoming popular for 3-D fuel depletion analyses to compute quantities of interest in spent nuclear fuel including isotopic compositions. The Monte Carlo approach has not been fully embraced due to unresolved issues concerning the effect of Monte Carlo uncertainties on the predicted results.

Use of the Monte Carlo method to solve the neutron transport equation introduces stochastic uncertainty in the computed fluxes. These fluxes are used to collapse cross sections, estimate power distributions, and deplete the fuel within depletion …


Spectroscopic Methods Of Process Monitoring For Safeguards Of Used Nuclear Fuel Separations, Jamie Lee Warburton Dec 2011

Spectroscopic Methods Of Process Monitoring For Safeguards Of Used Nuclear Fuel Separations, Jamie Lee Warburton

UNLV Theses, Dissertations, Professional Papers, and Capstones

To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations.

The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By …


Computational Study Of Passive Neutron Albedo Reactivity (Pnar) Measurement With Fission Chambers, Sandra De La Cruz May 2011

Computational Study Of Passive Neutron Albedo Reactivity (Pnar) Measurement With Fission Chambers, Sandra De La Cruz

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Passive Neutron Albedo Reactivity technique (PNAR) was used to assay used nuclear fuel as a potential method for the measurement of fissionable material in fuel assemblies. A Monte Carlo transport code (MCNPX 2.6) was used to develop simulation models to evaluate the PNAR technique. The MCNPX simulated models consisted of two 17x17 Pressurized Water Reactor (PWR) used fuel assemblies; one with an initial 3 wt% uranium-235*, cooled for 20 years and second with an initial 4 wt% uranium-235*, cooled for 5 years. Each used fuel assembly was simulated at four different burn up rates of 15, 30, 45, and …


Structure Studies On Lanthanide Technetium Pyrochlores As Prospective Host Phases To Immobilize 99- Technetium And Fission Lanthanides From Effluents Of Reprocessed Used Nuclear Fuels, Thomas Hartmann, Ariana Alaniz Apr 2011

Structure Studies On Lanthanide Technetium Pyrochlores As Prospective Host Phases To Immobilize 99- Technetium And Fission Lanthanides From Effluents Of Reprocessed Used Nuclear Fuels, Thomas Hartmann, Ariana Alaniz

Festival of Communities: UG Symposium (Posters)

We performed a systematic investigation of the incorporation of 99Tc into pyrochlore oxide structures, Ln2Tc2O7, where Ln represents trivalent lanthanide Ln3+ cations, while 99Tc is atetravalent, Tc4+, metal cation. Pyrochlore compounds are high-melting temperature oxides and are recognized for their durability. Our goal in this preliminary study is to characterize and quantify the range of stability of the lanthanum technetium pyrochlore oxide phase. Hereby, powder X-ray diffraction (XRD) and Rietveld analysis were used to determine and characterize the crystalline phase content with high accuracy, and scanning electron microscopy (SEM) was used to characterize the microstructure and homogeneity of the synthesized …


Impact Investigation Of Reactor Fuel Operating Parameters On Reactivity For Use In Burnup Credit Applications, Tanya N. Sloma Nov 2010

Impact Investigation Of Reactor Fuel Operating Parameters On Reactivity For Use In Burnup Credit Applications, Tanya N. Sloma

UNLV Theses, Dissertations, Professional Papers, and Capstones

When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide …


Evaluation Of Low-Temperature Fluoride Routes To Synthesize Actinide Nitrides And Oxide Solid Solutions, Gunanda Waduge Chinthaka Silva May 2009

Evaluation Of Low-Temperature Fluoride Routes To Synthesize Actinide Nitrides And Oxide Solid Solutions, Gunanda Waduge Chinthaka Silva

UNLV Theses, Dissertations, Professional Papers, and Capstones

Actinide mononitrides have been considered as a possible nuclear fuel for the Generation-IV nuclear reactor systems. In the process of evaluating these actinide mononitrides as nuclear fuel, it is important to study different chemical and physical characteristics of these compounds. Synthesis of the materials is thus important. Carbothermic reduction is one of the techniques that have been used to synthesize actinide mononitrides. In this method, a mixture of actinide oxide such as UO 2 and excess carbon is heat treated at temperatures greater than 1700 °C under a nitrogen atmosphere. The technique is however not promising in synthesizing the actinide …


Zirconia-Magnesia Inert Matrix Fuel And Waste Form: Synthesis, Characterization And Chemical Performance In An Advanced Fuel Cycle, Kiel Steven Holliday Jan 2009

Zirconia-Magnesia Inert Matrix Fuel And Waste Form: Synthesis, Characterization And Chemical Performance In An Advanced Fuel Cycle, Kiel Steven Holliday

UNLV Theses, Dissertations, Professional Papers, and Capstones

There is a significant buildup in plutonium stockpiles throughout the world, because of spent nuclear fuel and the dismantling of weapons. The radiotoxicity of this material and proliferation risk has led to a desire for destroying excess plutonium. To do this effectively, it must be fissioned in a reactor as part of a uranium free fuel to eliminate the generation of more plutonium. This requires an inert matrix to volumetrically dilute the fissile plutonium. Zirconia-magnesia dual phase ceramic has been demonstrated to be a favorable material for this task. It is neutron transparent, zirconia is chemically robust, magnesia has good …


Spatially Resolved Optical Absorption Spectrometry And Single Crystal Diffraction On Metamict Materials, Alison Savage, Oliver Tschauner, Sergey Tkachev Aug 2008

Spatially Resolved Optical Absorption Spectrometry And Single Crystal Diffraction On Metamict Materials, Alison Savage, Oliver Tschauner, Sergey Tkachev

Undergraduate Research Opportunities Program (UROP)

A major goal in developing storage medium for radioactive waste is the identification of chemically suitable and durable material for storage in repositories (Lumpkin 2006). Radiation damage induces enhanced chemical diffusion and structural breakdown of the host materials, which can lead to contamination of the surrounding environment. During this project four different naturally occurring materials which are common carriers of thorium and uranium were examined : gadolinite, perrierite, allanite, and pyrochlore of which the first three are silicates and pyrochlore being an oxide. Their spectra and absorptions bands were examined to identify prominent features due to radiation damage. The goal …


Nuclear Energy, Steve Kraft Apr 2008

Nuclear Energy, Steve Kraft

Native American Forum on Nuclear Issues

Abstract:

-Why Nuclear Energy?

-The lesson of the last 20 years in U.S. electricity policy:

– Diversified fuel and technology portfolio is essential

– All fuels and technologies (nuclear, coal, natural gas, renewables, efficiency) have a legitimate role

-The challenge for the future:

– Preserving/restoring diversified portfolio

– Ensuring resource adequacy, particularly in competitive markets

-Expanded use of nuclear energy is part of the answer

– Integrated used fuel management supports nuclear competitiveness


Evaluation Of Cs/Sr Waste Form For Long Term Storage And Disposal, Gary Cerefice Jan 2008

Evaluation Of Cs/Sr Waste Form For Long Term Storage And Disposal, Gary Cerefice

Waste Forms Campaign (TRP)

The goal of this project is to examine the potential long term performance of the proposed aluminosilicate waste/storage form for the isolation and eventual direct disposal of the cesium and strontium separated from recycled nuclear fuel. In the first phase of this work, researchers will investigate the sintering procedure to prepare the drum-like aluminosilicate waste/storage form from the as-received aluminosilicate powder, and then examine the basic physical properties, phase structure and microstructure of the sintered aluminosilicate with /without mixing solution with several ppm Cs/Sr. In the second phase, researchers will evaluate the interaction of the proposed waste form with structural …


Knowledge-Based Information Resource Management System For Materials Of Sodium-Cooled Fast Reactor, Sean Hsieh Jan 2008

Knowledge-Based Information Resource Management System For Materials Of Sodium-Cooled Fast Reactor, Sean Hsieh

Reactor Campaign (TRP)

In the development of advanced fast reactors, materials and coolant/material interactions pose a critical barrier for higher temperature and longer core life designs. For advanced burner reactors (sodium cooled) such as EBR-II and FFTF, experience has shown that the qualified structural materials and fuel cladding severely limits the economic performance. In other liquid metal cooled reactor concepts, advanced materials and better understanding and control of coolant and materials interactions are necessary for realizing the potentials.

Liquid sodium has been selected as the primary coolant candidate for Gen. IV nuclear energy systems. Global Nuclear Partnership (GNEP) Advanced Burned Reactor (ABR) has …


Separation Of Technetium From Uranium And Waste Form Synthesis, Kenneth Czerwinski Jan 2008

Separation Of Technetium From Uranium And Waste Form Synthesis, Kenneth Czerwinski

Waste Forms Campaign (TRP)

In this project, systematic investigations on the Tc-Zr binary metal system will be evaluated for the first time. The synthesis of metallic Tc as well as its alloys with Zr will be evaluated. In order to provide valuable data to AFC R&D, the thermodynamic equilibrium phases, as well as their performance under repository conditions, will be examined.

The research objectives of this project are as follows:

• Evaluate anion exchange methods for achieving the separation of Tc from U.

• Synthesize metallic Tc from the separated product.

• Synthesize and characterize Tc alloys.

• Investigate Tc-corrosion and Tc-leaching of binary …


Evaluation Of Cs/Sr Waste Form For Long Term Storage And Disposal, Gary Cerefice, Longzhou Ma Jan 2008

Evaluation Of Cs/Sr Waste Form For Long Term Storage And Disposal, Gary Cerefice, Longzhou Ma

Waste Forms Campaign (TRP)

To facilitate long-term storage, the disposal containers will need to be able to survive for the entire storage interval. The first aspect of the project will explore the potential interaction of the aluminosilicate waste form with the storage canister materials to determine if there is any corrosion or chemical interaction concerns for the storage of the materials. At the end of the storage interval, most of the cesium (137Cs) in the waste form will have decayed to its daughter, barium (137Ba). While this decay provides a significant reduction in the decay heat generated by the waste …


Development Of Integrated Process Simulation System Model For Spent Fuel Treatment Facility Design, Yitung Chen, Sean Hsieh Jan 2008

Development Of Integrated Process Simulation System Model For Spent Fuel Treatment Facility Design, Yitung Chen, Sean Hsieh

Separations Campaign (TRP)

The major objectives will lead to the creation of a framework that combines all the strengths of AMUSE’s complicated calculations, well-established commercial system process package, and ISOPro’s flexible parameter optimization modules. Development of the process simulation code can be done using the solvent extraction process at Argonne National Laboratory in collaboration with the research team from the Mechanical Engineering Department at UNLV.

Research accomplishments:

• Completed final version of the ISOPro User Manual associated with summarized ISOPro source codes.

• Redesigned and completed use case and design class diagrams (DCD) of the ISOPro package using ArgoUML.

• Improved ISOPro system …


Reactor Physics Studies For The Afci Reactor-Accelerator Coupling Experiments Project, Denis Beller Jan 2008

Reactor Physics Studies For The Afci Reactor-Accelerator Coupling Experiments Project, Denis Beller

Transmutation Sciences Physics (TRP)

The specific research objective of this three-year project was to design and conduct accelerator driven experiments, to help demonstrate the ability to design, compute, and conduct ADS experiments and to predict and measure source importance, coupling efficiency, sub-critical reactor kinetics and source-driven transients. In addition, databases were created for both steady state and transient ADS experiments for the nuclear community to develop and test new computational codes and methods. The importance of a driving neutron source in various regions of different subcritical assemblies was mapped. Experiments were conducted and compared to calculations with radiation transport and thermal hydraulics codes such …


Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson Jan 2008

Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson

Transmutation Sciences Materials (TRP)

Advanced nuclear processes and facilities (e.g., transmutation of nuclear waste, fast reactors, and spallation neutron sources) impose special demands on materials, which must withstand high temperatures, high radiation fields, and chemical corrosion. Proposed schemes for transmuting nuclear waste require a nonmoderating coolant such as lead-bismuth eutectic (LBE) or liquid sodium. While LBE corrodes most steels, small amounts of oxygen in the LBE greatly reduces the corrosion rate, and could ideally re-grow a damaged oxide layer in situ. The protective oxide layer would thus be self-healing. However, a fundamental understanding of the role of oxygen and passivating oxide layers is presently …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2008

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The beneficial effects of Si on both the metallurgical and corrosion properties of Cr-Mo steels have previously been demonstrated at UNLV. Therefore, additions of Si ranging from 0.5-2.0 weight percent (wt%) was attempted in this investigation to explore Si effect on both the high temperature tensile properties and corrosion behavior of T91 grade steel. Corrosion studies in the presence of molten LBE could not be performed due to a lack of proper experimental facilities at UNLV. Therefore, detailed corrosion studies involving Si-containing T91 grade steels were performed in an aggressive aqueous solution of acidic pH. Further, significant efforts have been …


Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Taide Tan, Jinsuo Zhang, Jichun Li Jan 2008

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Taide Tan, Jinsuo Zhang, Jichun Li

Transmutation Sciences Materials (TRP)

In advanced nuclear energy systems, lead alloys emerge as strong candidates for transmutation and advanced reactor systems as nuclear coolants and spallation neutron targets. However, it is widely recognized that corrosion of materials caused by lead alloys presents a critical barrier to their industrial use. A few experimental research and development projects have been set up by different groups such as at Los Alamos National Laboratory to study the corrosion phenomena in their test facilities and to develop mitigation techniques and materials. One of the central or main techniques under development is to use active control of oxygen thermodynamic activity …


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2008

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to …


Combined Radiation Detection Methods For Assay Of Higher Actinides In Separation Processes, Denis Beller, Charlotta Sanders, Warnick Kernan Jan 2008

Combined Radiation Detection Methods For Assay Of Higher Actinides In Separation Processes, Denis Beller, Charlotta Sanders, Warnick Kernan

Safeguards Campaign (TRP)

In the MPAC project, faculty and students are investigating the potential to use combined neutron and gamma-ray detector systems to measure quantities and isotopic constituents contained during separations and intermediate storage. This will require knowledge of the nuclear and decay characteristics of materials during processing, the development of conceptual designs of monitoring systems, radiation transport studies to develop an understanding of operational regimes, and experiments to confirm performance. In addition, both passive and active concepts will be investigated, including collaborations with the Idaho Accelerator Center at Idaho State University (ISU) to use electron linear accelerators for producing photoneutrons in situ, …


Thermal Transient Flow Rate Sensor For High Temperature Liquid Metal Cooled Nuclear Reactor, Yingtao Jiang, Jian Ma Jan 2008

Thermal Transient Flow Rate Sensor For High Temperature Liquid Metal Cooled Nuclear Reactor, Yingtao Jiang, Jian Ma

Reactor Campaign (TRP)

In nuclear power plants and accelerator driven systems (ADS) for nuclear waste treatment, it is important to monitor the coolant flow rate in the reactor core and pipe-line. In such a strong irradiation, high pressure, and temperature environment, the existing flow measurement techniques (such as Electromagnetic flow meters, Ultrasonic flow meters, Turbine flow meters, etc.) are not accurate and reliable.

The measurement of flow rates (mass flow rates or volume flow rate) plays a notable role in monitoring and controlling the experimental conditions. The bulk flow rates can be obtained through direct methods, which measure the amount of discharged fluids …