Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Heat Transfer, Combustion

Decomposition (Chemistry)

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Nuclear Engineering

High Temperature Heat Exchanger Project: Quarterly Progress Report July 1, 2007 Through September 30, 2007, Anthony Hechanova Oct 2007

High Temperature Heat Exchanger Project: Quarterly Progress Report July 1, 2007 Through September 30, 2007, Anthony Hechanova

Publications (NSTD)

• Ceramatec Sulfuric Acid Decomposer. The numerical model of a SiC ceramic coupon with two layers of microchannels was developed. Calculations of the factor of safety and probability of failure for the case of a straight channel were performed. Results for a pressure of 7.5 MPa were performed. The thermal and mechanical stress analyses of the Ceramatec HTHX and decomposer were completed.

• Bayonet Heat Exchanger. The thermal and mechanical stress analyses of the bayonet type HTHX and decomposer (Sandia design) were completed. Temperature profiles obtained from thermocouples measured from the Sandia experiments have been applied to the whole packed …


High Temperature Heat Exchanger Project: Quarterly Progress Report April 1, 2007 Through June 30, 2007, Anthony Hechanova Jul 2007

High Temperature Heat Exchanger Project: Quarterly Progress Report April 1, 2007 Through June 30, 2007, Anthony Hechanova

Publications (NSTD)

• Ceramatec Sulfuric Acid Decomposer. Modeling with different reacting flow channel configurations (ribbed-surface channels, hexagonal channels, and diamond-shaped channels) was performed. The probability of failure for the one channel geometry with different reacting flow channel configurations was calculated to be zero in the three principal directions for all of the cases.

• Bayonet Heat Exchanger. The Matlab code for calculating the probability of failure using a two-dimensional axisymmetric model of the bayonet decomposer was developed. The probability of failure was calculated for the inner and outer SiC walls, and the intermediate quartz wall of the decomposer and found to be …


High Temperature Heat Exchanger Project: Quarterly Progress Report January 1, 2007 Through March 31, 2007, Anthony Hechanova Apr 2007

High Temperature Heat Exchanger Project: Quarterly Progress Report January 1, 2007 Through March 31, 2007, Anthony Hechanova

Publications (NSTD)

• The variation of sulfur dioxide production (throughput) of the baseline design of the Ceramatec sulfuric acid decomposer with total mass flow rate of reacting flow has been calculated. According to the calculations, the sulfur dioxide production increases as the total mass flow rate of reacting flow increases regardless of the fact that decomposition percentage of sulfuric trioxide decreases. A parametric study of the baseline design of the Ceramatec sulfuric acid decomposer was performed.

• The thermal performance using various channel geometries for the decomposer was studied. The baseline design (straight channels) has 89.5% thermal efficiency while the thermal efficiency …


High Temperature Heat Exchanger Project: Quarterly Progress Report October 1, 2006 Through December 31, 2006, Anthony Hechanova Jan 2007

High Temperature Heat Exchanger Project: Quarterly Progress Report October 1, 2006 Through December 31, 2006, Anthony Hechanova

Publications (NSTD)

Modifications to the single-channel models of the Ceramatec heat exchanger and decomposer concept for hexagonal flow channels under two values of layer-overlapping (50% and 100%) and for diamond-shaped flow channels were completed.

The finite element calculations of the “Ball on Three Ball Test” for ceramic material for the purpose of selecting the appropriate specimen thickness for future experimental testing was performed for plate thicknesses ranging from 2 to 8 mm.

A finite element model of the “Ball on Three Ball Test” was also studied for discs having micro-channels.


High Temperature Heat Exchanger Project: Quarterly Progress Report July 1, 2006 Through September 30, 2006, Anthony Hechanova Oct 2006

High Temperature Heat Exchanger Project: Quarterly Progress Report July 1, 2006 Through September 30, 2006, Anthony Hechanova

Publications (NSTD)

Hydrodynamics and thermal numerical modeling coupled with sulfur trioxide decomposition for the one channel geometry with three different channel configurations were performed. The results obtained from the numerical modeling were compared with the baseline design under the same boundary and operation conditions. The case with diamond shaped channels has the highest percentage of sulfuric acid decomposition. The baseline channel geometry has the lowest pressure drop compared with other cases.