Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences

Separations Campaign (TRP)

2002

Keyword

Articles 1 - 9 of 9

Full-Text Articles in Nuclear Engineering

Development Of A Systems Engineering Model Of The Chemical Separations Process: Quarterly Progress Report 8/16/02- 11/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper Nov 2002

Development Of A Systems Engineering Model Of The Chemical Separations Process: Quarterly Progress Report 8/16/02- 11/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper

Separations Campaign (TRP)

Two activities are proposed in this Phase I task: the development of a systems engineering model and the refinement of the Argonne code AMUSE (Argonne Model for Universal Solvent Extraction). The detailed systems engineering model is the start of an integrated approach to the analysis of the materials separations associated with the AAA Program. A second portion of the project is to streamline and improve an integral part of the overall systems model, which is the software package AMUSE. AMUSE analyzes the UREX process and other related solvent extraction processes and defines many of the process streams that are integral ...


Development Of A Systems Engineering Model Of The Chemical Separations Process, Yitung Chen, Randy Clarksean, Darrell Pepper Sep 2002

Development Of A Systems Engineering Model Of The Chemical Separations Process, Yitung Chen, Randy Clarksean, Darrell Pepper

Separations Campaign (TRP)

The AAA program is developing technology for the transmutation of nuclear waste to address many of the long-term disposal issues. An integral part of this program is the proposed chemical separations scheme. This process, as envisioned by Argonne National Laboratory (ANL) researchers, will be outlined later in this report.

Nearly all issues related to risks to future generations arising from long-term disposal of such spent nuclear fuel is attributable to ~1% of its content. This 1% is made up primarily of plutonium, neptunium, americium, and curium (the transuranic elements) and long-lived isotopes of iodine and technetium created as products from ...


Development Of A Systems Engineering Model Of The Chemical Separations Process: Quarterly Progress Report 5/16/02- 8/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper Aug 2002

Development Of A Systems Engineering Model Of The Chemical Separations Process: Quarterly Progress Report 5/16/02- 8/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper

Separations Campaign (TRP)

Two activities are proposed in this Phase I task: the development of systems engineering model and the refinement of the Argonne code AMUSE (Argonne Model for Universal Solvent Extraction). The detailed systems engineering model is the start of an integrated approach to the analysis of the materials separations associated with the AAA Program. A second portion of the project is to streamline and improve an integral part of the overall systems model, which is the software package AMUSE. AMUSE analyzes the UREX process and other related solvent extraction processes and defines many of the process streams that are integral to ...


Development Of A Systems Engineering Model Of The Chemical Separations Process, Yitung Chen, Darrell Pepper, Randy Clarksean May 2002

Development Of A Systems Engineering Model Of The Chemical Separations Process, Yitung Chen, Darrell Pepper, Randy Clarksean

Separations Campaign (TRP)

Two activities are proposed: the development of a systems engineering model and the refinement of the Argonne code AMUSE (Argonne Model for Universal Solvent Extraction). The detailed systems engineering model will be the start of an integrated approach to the analysis of the materials separations associated with the AAA Program. A second portion of the project will streamline and improve an integral part of the overall systems model, which is the software package AMUSE. AMUSE analyzes the UREX process and other related solvent extraction processes and defines many of the process streams that are integral to the systems engineering model ...


Development Of A Systems Engineering Model Of The Chemical Separations Process: Quarterly Progress Report 2/16/02- 5/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper May 2002

Development Of A Systems Engineering Model Of The Chemical Separations Process: Quarterly Progress Report 2/16/02- 5/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper

Separations Campaign (TRP)

Two activities are proposed in this Phase I task: the development of systems engineering model and the refinement of the Argonne code AMUSE (Argonne Model for Universal Solvent Extraction). The detailed systems engineering model is the start of an integrated approach to the analysis of the materials separations associated with the AAA Program. A second portion of the project is to streamline and improve an integral part of the overall systems model, which is the software package AMUSE. AMUSE analyzes the UREX process and other related solvent extraction processes and defines many of the process streams that are integral to ...


Nuclear Criticality Analyses Of Separations Processes For The Transmutation Fuel Cycle: Quarterly Report, William Culbreth, Pang Tao Apr 2002

Nuclear Criticality Analyses Of Separations Processes For The Transmutation Fuel Cycle: Quarterly Report, William Culbreth, Pang Tao

Separations Campaign (TRP)

During the first two quarters of the work, the tasks included training students in the use of Monte Carlo codes used in radiation transport studies and the assessment of neutron multiplication factors for specific problems outlined by ANL-East through Drs. Laidler and Vandegrift.

The proposal also included objectives for the first year of work on this project, as listed below. The work conducted in the second quarter of the project was in partial completion of these objectives.

• Train UNLV students in the use of SCALE and/or MCNP for the assessment of nuclear criticality.

• Assess neutron multiplication factor, keff ...


Development Of A Systems Engineering Model Of The Chemical Separations Process: Quarterly Progress Report 11/16/01- 2/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper Feb 2002

Development Of A Systems Engineering Model Of The Chemical Separations Process: Quarterly Progress Report 11/16/01- 2/15/02, Yitung Chen, Randy Clarksean, Darrell Pepper

Separations Campaign (TRP)

The AAA program is developing technology for the transmutation of nuclear waste to address many of the long-term disposal issues. An integral part of this program is the proposed chemical separations scheme.

Two activities are proposed in this Phase I task: the development of systems engineering model and the refinement of the Argonne code AMUSE (Argonne Model for Universal Solvent Extraction). The detailed systems engineering model is the start of an integrated approach to the analysis of the materials separations associated with the AAA Program. A second portion of the project is to streamline and improve an integral part of ...


Nuclear Criticality, Shielding, And Thermal Analyses Of Separations Processes For The Transmutation Fuel Cycle, William Culbreth, Denis Beller Jan 2002

Nuclear Criticality, Shielding, And Thermal Analyses Of Separations Processes For The Transmutation Fuel Cycle, William Culbreth, Denis Beller

Separations Campaign (TRP)

The remediation of nuclear waste created by conventional fission reactors will rely upon the separation of the waste products for further treatment. The UREX+ process now under review will involve the use of an aqueous chemical process to separate out depleted uranium resulting in a product containing minor actinides, fission products, cesium, strontium, technetium, and iodine. The radioactive decay of strontium and cesium produces roughly half of the thermal and gamma production in spent fuel and the relatively short halflife of isotopes of both of these elements requires storage for about 300 years before heat and radiation decreases to safe ...


Nuclear Criticality Analyses Of Separations Processes For The Transmutation Fuel Cycle, William Culbreth, Pang Tao, Denis Beller Jan 2002

Nuclear Criticality Analyses Of Separations Processes For The Transmutation Fuel Cycle, William Culbreth, Pang Tao, Denis Beller

Separations Campaign (TRP)

The separation and partitioning of used commercial reactor fuel is a vital component of any reprocessing or transmutation strategy. To process the high actinide fuels required for a transmutation effort, the Chemical Technology Division (CMT) at Argonne National Laboratory (ANL) is developing a pyrochemical separations process. Currently, this work is being done via small experiments. While this is more than sufficient to develop the technologies required to process actinide-bearing fuels, it does not allow for the direct investigation of criticality concerns that would be present in larger systems. As the volume of waste to be treated increases, a higher probability ...