Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nuclear Engineering

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 1st Quarterly Report, 2006, Clemens Heske Jan 2006

Interaction Between Metal Fission Products And Triso Coating Materials: A Study Of Chemical Bonding And Interdiffusion: 1st Quarterly Report, 2006, Clemens Heske

Fuels Campaign (TRP)

This project is devoted to an in-depth study of the chemical and electronic impact of metal fission products on the coating layers in TRISO nuclear fuel. In particular, there is a focus on the investigation of Pd, Cs, and Ag and their interface formation with SiC and carbon-based substrates. A variety of surface and near-surface bulk sensitive probes that investigate the occupied and unoccupied electronic states of the substrate and the metal overlayer have been utilized. By a controlled and stepwise deposition of the metal overlayer, it is possible to gain substantial insight into the formation of interfaces and their ...


Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske Jan 2006

Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske

Fuels Campaign (TRP)

In this project the chemical bonding and interface formation of metal fission products with the coating materials used in TRISO fuel particles is investigated. The interface formation of Pd, Cs, and Ag with SiC and pyrolytic carbon is studied in detail. Using the SiC single crystals and TRISO coating materials as substrates, interfaces are prepared under controlled conditions in an ultra-high vacuum environment and are studied with a photoelectron spectroscopy, Auger electron spectroscopy, Inverse Photoemission, X-ray emission spectroscopy, and X-ray absorption spectroscopy. Recent additions to the experimental approach include microscopic techniques (Transmission Electron Microscopy, Scanning Tunneling Microscopy, Atomic Force Microscopy ...


Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski Jan 2006

Dissolution, Reactor, And Environmental Behavior Of Zro2-Mgo Inert Fuel Matrix, Kenneth Czerwinski

Fuels Campaign (TRP)

This project examines inert fuels containing ZrO2 and MgO as the inert matrix, with the relative amount of MgO varied from 30% to 70% in ZrO2. Reactor physics calculations are used to examine suitable quantities of burnable poisons from the candidate elements Gd, Er, or Hf with reactor grade Pu providing the fissile component, with up to 10% of 239Pu. Ceramics are synthesized and characterized based on the reactor physics results. The solubility of the fuel ceramics, in reactor conditions, reprocessing conditions, and repository conditions, are investigated in a manner to provide thermodynamic data necessary for modeling ...


Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Thomas Hartmann Jan 2006

Solution-Based Synthesis Of Nitride Fuels, Kenneth Czerwinski, Thomas Hartmann

Fuels Campaign (TRP)

A wide variety of fuel concepts are considered for advanced reactor technology including metals, metal oxides or metal nitrides as solid solutions or composite materials. Nitride fuels have appropriate properties for advanced fuels including high thermal conductivity, thermal stability, solid-state solubility of actinides, fissile metal density, and suitable neutronic properties. A drawback of nitride fuels involves their synthesis. A key parameter for preparing oxide fuels is the precipitation step in the sol-gel process. For nitride fuels, the current synthetic route is carbothermic reduction from the oxide to the nitride. This process step is based on solid phase reactions and for ...