Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

University of Nevada, Las Vegas

Corrosion and anti-corrosives

Articles 1 - 30 of 38

Full-Text Articles in Nuclear Engineering

Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry Jan 2005

Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

There is an active international interest in lead-bismuth eutectic and similar liquid lead systems because of the relevance to the transmutation of nuclear waste, fast reactors, and spallation neutron sources.

Materials in these systems must be able to tolerate high neutron fluxes, high temperatures, and chemical corrosion. For lead bismuth eutectic (LBE) systems, there is an additional challenge because the corrosive behaviors of materials in LBE are not well understood. Most of the available information on LBE systems has come from the Russians, who have over 80 reactor-years experience with LBE coolant in their Alpha-class submarine reactors. The Russians found …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Jan 2005

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The corrosion of structural materials is a major concern for the use of lead-bismuth eutectic (LBE) systems for nuclear applications such as in transmuter targets or fast reactors. Corrosion in liquid metal systems can occur through various processes, including, for example, dissolution, formation of inter-metallic compounds at the interface, and penetration of liquid metal along grain boundaries. Predicting the rate of these processes depends on numerous system operational factors: temperature, system geometry, thermal gradients, solid and liquid compositions, and velocity of the liquid metal, to name a few. Corrosion, along with mechanical and/or hydraulic factors, often contributes to component failure. …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Trp Final Report 09/01/2003-08/31/2004, Samir Moujaes, Yitung Chen Aug 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Trp Final Report 09/01/2003-08/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2004-08/31/2004, Samir Moujaes, Yitung Chen Aug 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2004-08/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Third Quarterly Report 03/01/2004-05/31/2004, Samir Moujaes, Yitung Chen May 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Third Quarterly Report 03/01/2004-05/31/2004, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: First Quarterly Report 01/12/04-02/29/04, Samir Moujaes, Yitung Chen Feb 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: First Quarterly Report 01/12/04-02/29/04, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry Jan 2004

Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

There is an active international interest in lead-bismuth eutectic and similar liquid lead systems because of the relevance to the transmutation of nuclear waste, fast reactors, and spallation neutron sources. A successful program in nuclear waste processing that includes transmutation in accelerator-driven systems and fast reactors, would significantly decrease the space requirements for geological repositories.

Materials in these systems must be able to tolerate high neutron fluxes, high temperatures, and chemical corrosion. For lead bismuth eutectic (LBE) systems, there is an additional challenge because the corrosive behaviors of materials in LBE are not well understood. Most of the available information …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Jan 2004

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The corrosion of structural materials is a major concern for the use of lead-bismuth eutectic (LBE) systems for nuclear applications such as in transmuter targets or fast reactors. Corrosion in liquid metal systems can occur through various processes, including, for example, dissolution, formation of inter-metallic compounds at the interface, and penetration of liquid metal along grain boundaries. Predicting the rate of these processes depends on numerous system operational factors: temperature, system geometry, thermal gradients, solid and liquid compositions, and velocity of the liquid metal, to name a few. Corrosion, along with mechanical and/or hydraulic factors, often contributes to component failure. …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 09/01/2003-11/30/2003, Samir Moujaes, Yitung Chen Nov 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 09/01/2003-11/30/2003, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2003-08/30/2003, Samir Moujaes, Yitung Chen Aug 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Fourth Quarterly Report 06/01/2003-08/30/2003, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Annual Report -Phase Ii 09/01/2002-08/30/2003, Samir Moujaes, Yitung Chen Aug 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Annual Report -Phase Ii 09/01/2002-08/30/2003, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the TRP proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics - Phase Three, Samir Moujaes, Yitung Chen Aug 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics - Phase Three, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The proposed work will combine chemical kinetics and hydrodynamics in target and test-loop lead-bismuth eutectic (LBE) systems to model system corrosion effects. This approach will result in a predicative tool that can be validated with corrosion test data, used to systematically design tests and interpret the results, and provide guidance for optimization in LBE system designs. The task includes two subtasks. The first subtask is to try to develop the necessary predictive tools to be able to predict the levels of oxygen and corrosion products close to the boundary layer through the use of Computational Fluid Dynamics (CFD) modeling. The …


Quarterly Report For The Trp Project, March–June 2003, Samir Moujaes, Yitung Chen, Kanthi Kiran Daiska, Chao Wu Jun 2003

Quarterly Report For The Trp Project, March–June 2003, Samir Moujaes, Yitung Chen, Kanthi Kiran Daiska, Chao Wu

Transmutation Sciences Materials (TRP)

The MTL is assumed to be a 5m long rectangular loop with a circular cross-section. Because of the non-symmetry, and due to the active participation of the secondary flows due to the elbows present in the rectangular loop model, the geometry is considered as a 3D model.

When the regions of maximum corrosion and precipitation are compared, they fall in the same zone for both the analytical and simulated models. The reason for a larger concentration flux in the case of turbulent flow than for the laminar flow can be explained by the concept of higher lateral diffusion in the …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 12/1/02- 2/28/03, Samir Moujaes, Yitung Chen Feb 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 12/1/02- 2/28/03, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application.

Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with very limited density. The transport of oxygen and corrosion products, their interaction and variation of corrosion/precipitation along the flow are not well understood.

The first subtask of this project involves using a …


Experimental Investigation Of Steel Corrosion In Lead Bismuth Eutectic (Lbe): Characterization, Species Identification, And Chemical Reactions, John Farley, Dale L. Perry, Allen L. Johnson Feb 2003

Experimental Investigation Of Steel Corrosion In Lead Bismuth Eutectic (Lbe): Characterization, Species Identification, And Chemical Reactions, John Farley, Dale L. Perry, Allen L. Johnson

Transmutation Sciences Materials (TRP)

The goal of the present research is to achieve a basic understanding of corrosion of steels by Lead Bismuth Eutectic (LBE). Liquid LBE is under consideration in the transmuter as both a spallation target and as a blanket coolant. There have been previous studies of LBE, especially by the Russians, who have over 80 reactor-years experience with LBE coolant in their Alpha-class submarine reactors. The Russians found that the presence of small amounts (ppm) of oxygen in the LBE significantly reduced corrosion. However, a fundamental understanding and verification of its role in the corrosion of steels is still very incomplete. …


Corrosion Of Steel By Lead Bismuth Eutectic: Quarterly Report November- December 2002 January 2003, John Farley Feb 2003

Corrosion Of Steel By Lead Bismuth Eutectic: Quarterly Report November- December 2002 January 2003, John Farley

Transmutation Sciences Materials (TRP)

We continue to get valuable data from sputter depth profiling of steel samples. We meet weekly to discuss progress. We took depth-profiling data on D9 steel that had been exposed to LBE. This the first time we have examined this type of steel. This is important because it will enable us to separate out two effects and determine their effect on corrosion: composition of the steel vs surface preparation.

We started to plan a small experiments using a crucible of heated LBE, with the research program to be conducted at UNLV, on basic aspects of corrosion in this system. The …


Calibration Of Ysz Sensors For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic, Xiaolong Wu, Ramkumar Sivaraman, Ning Li, Wei Hang, T. W. Darling, Yingtao Jiang, Woosoon Yim, Bingmei Fu Jan 2003

Calibration Of Ysz Sensors For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic, Xiaolong Wu, Ramkumar Sivaraman, Ning Li, Wei Hang, T. W. Darling, Yingtao Jiang, Woosoon Yim, Bingmei Fu

Transmutation Sciences Materials (TRP)

Although liquid lead-bismuth eutectic (LBE) is a good candidate for coolant in the subcritical transmutation blanket, it is known to be corrosive to stainless steel, the material of the carrying tubes and containers. Such longterm corrosion problem can be prevented by producing and maintaining a protective oxide layer on the exposed surface of stainless steel. For this purpose, it is required to accurately control the concentration of oxygen dissolved in LBE. Currently, YSZ (Yttria Stabilized Zirconia) oxygen sensors, based on an existing automotive oxygen sensor, with molten bismuth saturated with oxygen as the reference, have been selected for oxygen-concentration measurement. …


Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry Jan 2003

Corrosion Of Steel By Lead Bismuth Eutectic, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

Materials for transmuter systems must be able to tolerate high neutron fluxes, great temperatures, and chemical corrosion. For lead bismuth eutectic (LBE) systems, there is an additional challenge in that the corrosive behaviors of materials in LBE are not well understood. Most of the available information on LBE systems has come from the Russians, who have over 80 reactor-years experience with LBE coolant in their Alpha-class submarine reactors. The Russians found that the presence of small amounts of oxygen (on the order of parts per million) in the LBE significantly reduced corrosion. However, a fundamental understanding and verification of its …


Surface Studies Of Corrosion Of Stainless Steel By Lead Bismuth Eutectic, Daniel Koury, Brian D. Hosterman, John Farley, Dale L. Perry, D. Parsons, J. Manzerova, Allen L. Johnson Jan 2003

Surface Studies Of Corrosion Of Stainless Steel By Lead Bismuth Eutectic, Daniel Koury, Brian D. Hosterman, John Farley, Dale L. Perry, D. Parsons, J. Manzerova, Allen L. Johnson

Transmutation Sciences Materials (TRP)

Why is Lead Bismuth Eutectic Important?

• Changing national security stances have led to reexamination of nuclear waste reprocessing

• Dangerous actinides can be separated and

• Transmuted into safer products, creating a waste form dangerous for only hundreds of years, in addition to the production (up to 1/3 of the original fission energy) of useful energy

• Non-moderating coolants or spallation targets for production of fast neutrons is required for transmutation

• Russian experience with LBE coolants in their nuclear submarine fleet makes LBE an attractive possible transmutation coolant technology

• Corrosion of steel by LBE is an important …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen Jan 2003

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The corrosion of structural materials is a major concern for the use of lead-bismuth eutectic (LBE) systems for nuclear applications such as in transmuter targets or fast reactors. Corrosion in liquid metal systems can occur through various processes, including, for example, dissolution, formation of inter-metallic compounds at the interface, and penetration of liquid metal along grain boundaries. Predicting the rate of these processes depends on numerous system operational factors: temperature, system geometry, thermal gradients, solid and liquid compositions, and velocity of the liquid metal, to name a few. Corrosion, along with mechanical and/or hydraulic factors, often contributes to component failure. …


Modeling Of Corrosion In Oxygen Controlled Lead Bismuth Eutectic Systems With The Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen, Kanthi Kiran Dasika, Chao Wu Jan 2003

Modeling Of Corrosion In Oxygen Controlled Lead Bismuth Eutectic Systems With The Coupling Of Chemical Kinetics And Hydrodynamics, Samir Moujaes, Yitung Chen, Kanthi Kiran Dasika, Chao Wu

Transmutation Sciences Materials (TRP)

Objectives:

  • To simulate a 2-D model of the Materials Test Loop by approximating it to be a toroid with a pie cross section for the purpose of comparing the simulated results with the analytical results.
  • The temperature and concentration profiles on the wall boundaries imposed are similar to the actual test model.
  • Geometry effects have great influence on local corrosion rate.
  • A 2-D benchmark problem and a sudden expansion case are studied which show good consistency to analytical solution.
  • Results from 2-D sudden expansion problem are similar to experimental data obtained by other researchers.


Investigation Of The Corrosion Of Steel By Lead-Bismuth Eutectic (Lbe) Using Scanning Electron Microscopy And X-Ray Photoelectron Spectroscopy, Daniel Koury Dec 2002

Investigation Of The Corrosion Of Steel By Lead-Bismuth Eutectic (Lbe) Using Scanning Electron Microscopy And X-Ray Photoelectron Spectroscopy, Daniel Koury

UNLV Theses, Dissertations, Professional Papers, and Capstones

Lead Bismuth Eutectic (LBE) has been proposed for use in programs for accelerator transmutation of waste. LBE is the leading candidate material as a spallation target and an option for the sub-critical blanket coolant. The corrosion of 316 and 316L stainless steels by LBE has been studied using UNLV's facilities for Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). We have compared exposed and unexposed samples and studied the differences. Some amount of surface contamination is present on the samples and has been removed by ionbeam etching. The unexposed samples reveal typical stainless steel characteristics: a chromium oxide passivation …


Corrosion Of Steel By Lead Bismuth Eutectic: Quarterly Report August September October 2002, John Farley Nov 2002

Corrosion Of Steel By Lead Bismuth Eutectic: Quarterly Report August September October 2002, John Farley

Transmutation Sciences Materials (TRP)

We continued with sputter depth profiling of 316 and 316L steel samples that have been exposed to LBE. We also calibrated the sputter depth profiling using a sample of SiO2 on Si, and the SEM. This is a valuable independent determination of the thickness of oxide layers.

In the laboratory, progress continues using the XPS machine. Experiments have been performed on steel samples using Argon ions to mill away the surface of the sample, thereby making measurements as a function of depth. This "ion beam milling" proceeds slowly through the oxide layer that covers the steel sample. We are …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Final Report -Phase I 09/01/2001-08/30/2002, Samir Moujaes, Yitung Chen Aug 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Task V: Final Report -Phase I 09/01/2001-08/30/2002, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with only very sparse experimental data. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high …


Corrosion Of Steel By Lead Bismuth Eutectic: Quarterly Report For May-June-July 2002, John Farley Aug 2002

Corrosion Of Steel By Lead Bismuth Eutectic: Quarterly Report For May-June-July 2002, John Farley

Transmutation Sciences Materials (TRP)

The goal of this project is to understand the basic science of corrosion in the steel/LBE system.

We are taking more data, typically using the newly installed X-ray Photoelectron Spectrometry (XPS) apparatus, and analyzing our existing data. Undergraduate students Denise Parsons and Julia Manzerova have helped a great deal in the analysis of the data. We can obtain the elemental composition as a function of position within the sample. This gives clues to the migration of materials, the composition of the protective oxide layer, and the basic science of the corrosion process. We found dramatic differences between the exposed and …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 03/16/02- 06/15/02, Samir Moujaes, Yitung Chen Jun 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 03/16/02- 06/15/02, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application. Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with very limited density. Scientists have noticed that the concentration of oxygen dissolved in the liquid alloy could control the corrosion rate of steels exposed to Pb or Pb-Bi. At high oxygen concentration, …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Phase Two, Samir Moujaes, Yitung Chen May 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics-Phase Two, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The proposed work will combine chemical kinetics and hydrodynamics in target and test-loop lead-bismuth eutectic (LBE) systems to model system corrosion effects. This approach will result in a predicative tool that can be validated with corrosion test data, used to systematically design tests and interpret the results, and provide guidance for optimization in LBE system designs. The task includes two subtasks. The first subtask is to try to develop the necessary predictive tools to be able to predict the levels of oxygen and corrosion products close to the boundary layer through the use of Computational Fluid Dynamics (CFD) modeling. The …


Third Quarter Report, Covering January Through March 2002, John Farley Mar 2002

Third Quarter Report, Covering January Through March 2002, John Farley

Transmutation Sciences Materials (TRP)

Progress from June 2001-November 2001 was presented at the winter meeting of the American Nuclear Society in Reno (November 12-15, 2001), and incorporated into a refereed conference proceeding. A copy of the refereed conference proceeding has been provided to Tony Hechanova. In brief, the paper described the new program to examine the corrosive effects of lead-bismuth eutectic (LBE) on steels. We employed various types of surface studies (Scanning Electron Microscope [SEM], and X-ray Photoelectron Spectrometry [XPS]) to examine steel samples that had been exposed to LBE for various lengths of time at various temperatures. The goal is to understand the …


Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 11/16/01- 2/15/02, Samir Moujaes, Yitung Chen Feb 2002

Modeling Corrosion In Oxygen Controlled Lbe Systems With Coupling Of Chemical Kinetics And Hydrodynamics: Quarterly Progress Report 11/16/01- 2/15/02, Samir Moujaes, Yitung Chen

Transmutation Sciences Materials (TRP)

The Lead-Bismuth eutectic (LBE) has been determined from previous experimental studies by the Russians and the European scientific community to be a potential material that can be used as a spallation target and coolant for the AAA proposed application.

Properly controlling the oxygen content in LBE can drastically reduce the LBE corrosion to structural steels. However, existing knowledge of material corrosion performance was obtained from point-wise testing with very limited density. The transport of oxygen and corrosion products, their interaction and variation of corrosion/precipitation along the flow are not well understood.

The first subtask of this project involves using a …


Experimental Investigation Of Steel Corrosion In Lead Bismuth Eutectic (Lbe): Characterization, Species Identification, And Chemical Reactions, John Farley, Dale L. Perry, Allen L. Johnson Jan 2002

Experimental Investigation Of Steel Corrosion In Lead Bismuth Eutectic (Lbe): Characterization, Species Identification, And Chemical Reactions, John Farley, Dale L. Perry, Allen L. Johnson

Transmutation Sciences Materials (TRP)

The goal of the present research is to achieve a basic understanding of corrosion of steels by Lead Bismuth Eutectic (LBE). Liquid LBE is under consideration in the transmuter as both a spallation target and as a blanket coolant. There have been previous studies of LBE, especially by the Russians, who have over 80 reactor-years experience with LBE coolant in their Alpha-class submarine reactors. However, a fundamental understanding and verification of its role in the corrosion of steels is still very incomplete. We have begun a program of post-experiment testing and analysis on steel samples that have been in intimate …