Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir Jan 2021

Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir

Publications and Research

There is growing interest in using strongly coupled organic microcavities to tune molecular dynamics, including the electronic and vibrational properties of molecules. However, very little attention has been paid to the utility of cavity polaritons as sensors for out-of-equilibrium phenomena, including thermal excitations. Here, we demonstrate that non-resonant infrared excitation of an organic microcavity system induces a transient response in the visible spectral range near the cavity polariton resonances. We show how these optical responses can be understood in terms of ultrafast heating of electrons in the metal cavity mirror, which modifies the effective refractive index and subsequently the strong …


Fabrication Methods For Creating Flexible Polymer Substrate Sensor Tags, Jack L. Skinner, Harvey Ho Dec 2009

Fabrication Methods For Creating Flexible Polymer Substrate Sensor Tags, Jack L. Skinner, Harvey Ho

Mechanical Engineering

The authors describe the design, fabrication, and testing of a passive wireless sensor platform utilizing low-cost commercial surface acoustic wave filters and sensors. Polyimide and polyethylene terephthalate sheets are used as substrates to create a flexible sensor tag that can be applied to curved surfaces. A microfabricated antenna is integrated on the substrate in order to create a compact form factor. The sensor tags are fabricated using 315 MHz surface acoustic wave filters and photodiodes and tested with the aid of a fiber-coupled tungsten lamp. Microwave energy transmitted from a network analyzer is used to interrogate the sensor tag. Due …


Emergent Behavior In Massively-Deployed Sensor Networks, Ekaterina Shurkova, Ruzana Ishak, Stephan Olariu, Shaharuddin Salleh Jan 2008

Emergent Behavior In Massively-Deployed Sensor Networks, Ekaterina Shurkova, Ruzana Ishak, Stephan Olariu, Shaharuddin Salleh

Computer Science Faculty Publications

The phenomenal advances in MEMS and nanotechnology make it feasible to build small devices, referred to as sensors that are able to sense, compute and communicate over small distances. The massive deployment of these small devices raises the fascinating question of whether or not the sensors, as a collectivity, will display emergent behavior, just as living organisms do. In this work we report on a recent effort intended to observe emerging behavior of large groups of sensor nodes, like living cells demonstrate. Imagine a massive deployment of sensors that can be in two states "red" and "blue". At deployment time …


High-Resolution Thin-Film Device To Sense Texture By Touch, Ravi F. Saraf, Vivek Maheshwari Jun 2006

High-Resolution Thin-Film Device To Sense Texture By Touch, Ravi F. Saraf, Vivek Maheshwari

Papers in Nanotechnology

Touch (or tactile) sensors are gaining renewed interest as the level of sophistication in the application of minimum invasive surgery and humanoid robots increases. The spatial resolution of current large-area (greater than 1 cm2) tactile sensor lags by more than an order of magnitude compared with the human finger. By using metal and semi conducting nanoparticles, a 100-nm-thick, large-area thin-film device is self-assembled such that the change in current density through the film and the electroluminescent light intensity are linearly proportional to the local stress. A stress image is obtained by pressing a copper grid and a United …


High-Resolution Thin-Film Device To Sense Texture By Touch, Ravi F. Saraf, Vivek Maheshwari Jun 2006

High-Resolution Thin-Film Device To Sense Texture By Touch, Ravi F. Saraf, Vivek Maheshwari

Papers in Nanotechnology

Touch (or tactile) sensors are gaining renewed interest as the level of sophistication in the application of minimum invasive surgery and humanoid robots increases. The spatial resolution of current large-area (greater than 1 cm2) tactile sensor lags by more than an order of magnitude compared with the human finger. By using metal and semi conducting nanoparticles, a 100-nm-thick, large-area thin-film device is self-assembled such that the change in current density through the film and the electroluminescent light intensity are linearly proportional to the local stress. A stress image is obtained by pressing a copper grid and a United States 1-cent …