Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 38 of 38

Full-Text Articles in Nanoscience and Nanotechnology

Quantum Computing With Steady State Spin Currents, Brian Matthew Sutton Jan 2013

Quantum Computing With Steady State Spin Currents, Brian Matthew Sutton

Open Access Theses

Many approaches to quantum computing use spatially confined qubits in the presence of dynamic fields to perform computation. These approaches are contrasted with proposals using mobile qubits in the presence of static fields. In this thesis, steady state quantum computing using mobile electrons is explored using numerical modeling. Firstly, a foundational introduction to the case of spatially confined qubits embodied via quantum dots is provided. A collection of universal gates implemented with dynamic fields is described using simulations. These gates are combined to implement a five-qubit Grover search to provide further insight on the time-dependent field approach. Secondly, the quantum …


Refractive Index Chemical Sensing With Noble Metal Nanoparticles, Phillip Blake Dec 2012

Refractive Index Chemical Sensing With Noble Metal Nanoparticles, Phillip Blake

Graduate Theses and Dissertations

Chemical sensing is a key component in modern society, especially in engineering applications. Because of their widespread impact, improvements to chemical sensors are a significant area of research. One class of sensors, plasmonic sensors, is being heavily researched because of their ability to detect low levels of analyte in near real time without destroying the analyte. This work studies a new class of plasmonic sensor that utilizes diffractive coupling to improve sensor performance. Specifically, this work outlines the first study of diffractive coupling sensors with typical nanoparticle shapes. Sensitivity of this new class of sensor is directly compared to typical …


Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer Dec 2012

Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer

Graduate Theses and Dissertations

Advances in material science have resulted in the development of electrically nonlinear high dielectric thin film ferroelectrics, which have led to new opportunities for the creation of novel devices. This dissertation investigated one such device: a low voltage nonlinear transmission line (NLTL). A finite element simulation of ferroelectric transmission lines showed that NLTLs are capable of creating shockwaves. Additionally, if the losses are kept sufficiently low, it was shown that voltage gain should be possible. Furthermore, a method of accounting for material dispersion was developed. Results from simulations including material dispersion showed that temporal solitons might be possible from a …


Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li Aug 2012

Semiconductor Nanocrystals: From Quantum Dots To Quantum Disks, Zheng Li

Graduate Theses and Dissertations

The bottom-up colloidal synthesis opened up the possibility of finely tuning and tailoring the semiconductor nanocrystals. Numerous recipes were developed for the preparation of colloidal semiconductor nanocrystals, especially the traditional quantum dots. However, due to the lack of thorough understanding to those systems, the synthesis chemistry is still on the empirical level. CdS quantum dots synthesis in non-coordinating solvent were taken as a model system to investigate its molecular mechanism and formation process, ODE was identified as the reducing agent for the preparation of CdS nanocrystals, non-injection and low-temperature synthesis methods developed. In this model system, we not only proved …


Peptoid Based Slide Coatings For Disease Detection Via Elisa Microarray Analysis, Melissa Lea Hebert Aug 2012

Peptoid Based Slide Coatings For Disease Detection Via Elisa Microarray Analysis, Melissa Lea Hebert

Graduate Theses and Dissertations

Poly-N-substituted glycines (peptoids) are a very versatile family of synthetic molecules that can be customized for any number of applications. In this study, we chose to use peptoids as a foundation for sandwich ELISA microarray analysis with a long term goal of creating an early detection device for complex diseases such as cancer. The peptoids were designed to self-assemble into microspheres to be used in coatings on the surface of the microarray substrates to increase the surface area available for antibody attachment. This increased antibody density would lead to an increase in the microarray analysis sensitivity and dynamic range. Studies …


Fabrication And Characterization Of Thinner Solid-State Nanopores, Denis Forbi Tita Aug 2012

Fabrication And Characterization Of Thinner Solid-State Nanopores, Denis Forbi Tita

Graduate Theses and Dissertations

Solid State nanopores that are fabricated by the ion beam sculpting process and electron beam drilling have shown great promise as a sensing device for DNA and protein molecules. Even though biological pores such as the alpha-Haemolysin have been in use for quite some time, the use of solid state Nanopores in single biomolecule detection has been on the rise since the mid 1990s. Solid State nanopores have an advantage over biological pores in that they are more robust, stable, and can be sculpted to any desired size for use in translocation experiments. One of the major challenges in Nanopore …


High Frequency Characterization Of Carbon Nanotube Networks For Device Applications, Emmanuel Decrossas May 2012

High Frequency Characterization Of Carbon Nanotube Networks For Device Applications, Emmanuel Decrossas

Graduate Theses and Dissertations

This work includes the microwave characterization of carbon nanotubes (CNTs) to design new CNTs-based high frequency components. A novel developed method to extract the electrical properties over a broad microwave frequency band from 10 MHz to 50 GHz of carbon nanotubes (CNTs) in a powder form is performed. The measured scattering parameters (S-parameters) with a performance network analyzer are compared to the simulated one obtained from an in-house computed mode matching technique (MMT). An optimized first order gradient method iteratively changes the unknown complex permittivity parameters to map the simulated S-parameters with the measured one until convergence criteria are satisfied. …


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Graduate Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths. …