Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Nanoscience and Nanotechnology

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu May 2019

Plasmonic Properties Of Nanoparticle And Two Dimensional Material Integrated Structure, Desalegn Tadesse Debu

Theses and Dissertations

Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive ...


Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman Dec 2018

Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman

Theses and Dissertations

Technology based on the interaction between light and matter has entered something of a renaissance over the past few decades due to improved control over the creation of nanoscale patterns. Tunable nanofabrication has benefitted optical sensing, by which light is used to detect the presence or quantity of various substances. Through methods such as Raman spectroscopy, the optical spectra of solid, liquid, or gaseous samples act as fingerprints which help identify a single type of molecule amongst a background of potentially many other chemicals. This technique therefore offers great benefit to applications such as biomedical sensors, airport security, industrial waste ...


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted ...


Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear ...


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin Jan 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement ...


Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh Aug 2016

Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh

Theses and Dissertations

Nanostructures of noble metals show unique plasmonic behavior in the visible to near-infrared light range. Gold nanostructures exhibit a particularly strong plasmonic response for these wavelengths of light. In this study we have investigated optical enhancement and absorption of gold nanorods with different thickness using finite element method simulations. This study reports on the resonance wavelength of the sharp-corner and round-corner rectangles of constant length 100 nm and width 60 nm. The result shows that resonance wavelength depends on the polarization of the incident light; there also exists a strong dependence of the optical enhancement and absorption on the thickness ...


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical ...


Novel Concepts In Near-Field Optics: From Magnetic Near-Field To Optical Forces, Honghua Yang Jan 2015

Novel Concepts In Near-Field Optics: From Magnetic Near-Field To Optical Forces, Honghua Yang

Physics Graduate Theses & Dissertations

Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection.

Firstly, the optical dielectric functions ...


Optical And Electronic Interactions At The Nanoscale, Michael Edward Turk Jan 2015

Optical And Electronic Interactions At The Nanoscale, Michael Edward Turk

Publicly Accessible Penn Dissertations

In this dissertation, we discuss optical and electronic interactions in three nanometer scale semiconductor systems in a broadly defined sense. These studies are performed using time-integrated and time-resolved optical spectroscopies and temperature- and field-dependent electrical transport measurements. We first discuss the construction and optimization of an optical apparatus for performing broadband, time-integrated and sub-picosecond fluorescence and absorption measurements. Using this apparatus, we then characterize the impact on the optically-excited carrier relaxation dynamics of cadmium selenide quantum dots due to a surface treatment previously shown to increase interparticle coupling, namely the solution exchange of native, aliphatic ligands for thiocyanate followed by ...


Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru Jan 2014

Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru

Theses and Dissertations--Electrical and Computer Engineering

Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to other optical sensing techniques, LSPR sensors offer label-free detection of biomolecular interactions in localized sensing volume solutions. However, these sensors also suffer from a major disadvantage – LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index change and non-specific binding as well as specific binding of the target analyte. These interactions can severely compromise the measurement of the target analyte in a complex unknown media and hence limit the ...