Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Highly Efficient And Stable P-Type Zno Nanowires With Piezotronic Effect For Photoelectrochemical Water Splitting, Chang Cao, Xinxin Xie, Yamei Zeng, Shaohua Shi, Guizhen Wang, Liang Yang, Cai-Zhuang Wang, Shiwei Lin May 2019

Highly Efficient And Stable P-Type Zno Nanowires With Piezotronic Effect For Photoelectrochemical Water Splitting, Chang Cao, Xinxin Xie, Yamei Zeng, Shaohua Shi, Guizhen Wang, Liang Yang, Cai-Zhuang Wang, Shiwei Lin

Ames Laboratory Accepted Manuscripts

Unremitting efforts have been made to develop high-performance photoelectrochemical (PEC) water-splitting system to produce clean hydrogen fuel using sunlight. In this work, a novel way, combining highly-ordered nanowires (NWs) structure and piezotronic effect of p-type ZnO has been demonstrated to dramatically enhance PEC hydrogen evolution performance. Systematic characterizations indicate that the Sb atoms uniformly dope into ZnO NWs and substitute Zn sites with the introduction of two zinc vacancies to form the shallow acceptor SbZn–2VZn complex. Detailed synchrotron-based X-ray absorption near-edge structure (XANES) experiments in O K-edge and Zn L-edge further confirm the formation of the complex, and theoretical ...


Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara Dec 2017

Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara

Physics and Astronomy Faculty Publications

The present study examines the interaction of hydrogen and nitrogen plasmas with gallium in an effort to gain insights into the mechanisms behind the synergetic effect of plasma and a catalytic metal. Absorption/desorption experiments were performed, accompanied by theoretical-computational calculations. Experiments were carried out in a plasma-enhanced, Ga-packed, batch reactor and entailed monitoring the change in pressure at different temperatures. The results indicated a rapid adsorption/dissolution of the gas into the molten metal when gallium was exposed to plasma, even at a low temperature of 100 °C. The experimental observations, when hydrogen was used, indicate that gallium acts ...