Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Method For Production Of Germanium Nanowires Encapsulated Within Multi-Walled Carbon Nanotubes, Mark Crocker, Rodney Andrews, Arumugam Pandurangan, Dali Qian Apr 2018

Method For Production Of Germanium Nanowires Encapsulated Within Multi-Walled Carbon Nanotubes, Mark Crocker, Rodney Andrews, Arumugam Pandurangan, Dali Qian

Center for Applied Energy Research Faculty Patents

A method is provided for producing germanium nanowires encapsulated within multi-walled carbon nanotubes. The method includes the steps of performing chemical vapor deposition using a combined germanium and carbon source having a general formula of GeR(4-x)Lx, where x=0, 1, 2, or 3; R is selected from a group consisting of alkyl, cycloalkyl or aryl and L=hydrogen, halide or alkoxide and growing germanium nanowires encapsulated within multi-walled carbon nanotubes on a substrate. A reaction product of that method or process is also provided.


Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara Dec 2017

Synergistic Interactions Of H2 And N2 With Molten Gallium In The Presence Of Plasma, Maria L. Carreon, Daniel F. Jaramillo-Cabanzo, Indira Chaudhuri, Madhu Menon, Mahendra K. Sunkara

Physics and Astronomy Faculty Publications

The present study examines the interaction of hydrogen and nitrogen plasmas with gallium in an effort to gain insights into the mechanisms behind the synergetic effect of plasma and a catalytic metal. Absorption/desorption experiments were performed, accompanied by theoretical-computational calculations. Experiments were carried out in a plasma-enhanced, Ga-packed, batch reactor and entailed monitoring the change in pressure at different temperatures. The results indicated a rapid adsorption/dissolution of the gas into the molten metal when gallium was exposed to plasma, even at a low temperature of 100 °C. The experimental observations, when hydrogen was used, indicate that gallium acts ...


Hydrothermally Processed 1d Hydroxyapatite: Mechanism Of Formation And Biocompatibility Studies, Zoran Stojanović, Nenad Ignjatović, Victoria M. Wu, Vojca Žunič, Ljiljana Veselinović, Srečo D. Škapin, Miroslav Miljković, Vuk Uskoković, Dragab Uskoković Jun 2016

Hydrothermally Processed 1d Hydroxyapatite: Mechanism Of Formation And Biocompatibility Studies, Zoran Stojanović, Nenad Ignjatović, Victoria M. Wu, Vojca Žunič, Ljiljana Veselinović, Srečo D. Škapin, Miroslav Miljković, Vuk Uskoković, Dragab Uskoković

Pharmacy Faculty Articles and Research

Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome ...


Structures And Energetics Of Silicon Nanotubes From Molecular Dynamics And Density Functional Theory, Amritanshu Palaria, Gerhard Klimeck, Alejandro Strachan Nov 2008

Structures And Energetics Of Silicon Nanotubes From Molecular Dynamics And Density Functional Theory, Amritanshu Palaria, Gerhard Klimeck, Alejandro Strachan

PRISM: NNSA Center for Prediction of Reliability, Integrity and Survivability of Microsystems

We use molecular dynamics with a first-principles-based force field and density functional theory to predict the atomic structure, energetics, and elastic properties of Si nanotubes. We find various low-energy and low-symmetry hollow structures with external diameters of about 1 nm. These are the most stable structures in this small-diameter regime reported so far and exhibit properties very different from the bulk. While the cohesive energies of the four most stable nanotubes reported here are similar (from 0.638 to 0.697 eV above bulk Si), they have disparate Young's moduli (from 72 to 123 GPa).


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2008

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to ...


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2007

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to ...


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2006

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive ...