Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari Apr 2016

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari

Electronic Thesis and Dissertation Repository

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO2), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrifical hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO2 at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a ...


Development Of Nanostructured Limpo4 (M=Fe, Mn) As Cathodes For High Performance Lithium-Ion Batteries, Jinli Yang Sep 2013

Development Of Nanostructured Limpo4 (M=Fe, Mn) As Cathodes For High Performance Lithium-Ion Batteries, Jinli Yang

Electronic Thesis and Dissertation Repository

Olivine LiFePO4 has garnered the most interest because of its environmental benignity, high safety and theoretical capacity. However, the major limitation for LiFePO4 is the intrinsically poor electronic conductivity and ionic conductivity. The sluggish kinetics for LiFePO4 could be overcome by reducing the size, coating with conductive carbon, or doping with isovalent ions. The decrease of the size to nanoscale could shorten the diffusion time of Li ions in LiFePO4 during intercalation/deintercalation process, but the nano-size active material usually accompanies with low tap density. Carbon coating and carbon addition could alleviate the poor electronic conductivity ...


Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung Aug 2011

Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung

Electronic Thesis and Dissertation Repository

The discovery of electrically conductive bacterial nanowires from a broad range of microbes provides completely new insights into microbial physiology. Shewanella oneidensis strain MR-1, a dissimilatory metal-reducing bacterium, produces extracellular bacterial nanowires up to tens of micrometers long, with a lateral dimension of ~10 nm. The Shewanella bacterial nanowires are efficient electrical conductors as revealed by scanning probe techniques such as CP-AFM and STM.

Direct electrical transport measurements along Shewanella nanowires reveal a measured nanowire resistivity on the order of 1 Ω∙cm. With electron transport rates up to 109/s at 100 mV, bacterial nanowires can serve as ...