Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Nanotechnology Education—First Step In Implementing A Spiral Curriculum, Ganesh Balasubramanian, Vinod K. Lohani, Ishwar K. Puri, Scott W. Case, Roop L. Mahajan Jan 2011

Nanotechnology Education—First Step In Implementing A Spiral Curriculum, Ganesh Balasubramanian, Vinod K. Lohani, Ishwar K. Puri, Scott W. Case, Roop L. Mahajan

Ganesh Balasubramanian

A nanotechnology learning module was implemented into a freshman engineering course at Virginia Tech. The novelty of our approach is that an established spiral curriculum model has been employed, for the first time to the best of authors’ knowledge, to design the nanotechnology option. The module was piloted in a freshman class (180 students) during spring ‘08. The key components included (1) a prior knowledge survey, (2) a 40-minute in-class presentation on basic nanotechnology concepts, (3) an activity that involves nanoscale image analysis and the plotting of molecular forces usingLabVIEWsoftware,and(4)apost-modulesurvey.Lessonslearnedfromthepilotimplementationwereincorporated appropriately to expose roughly 1450 freshmen to nanotechnology basics in …


Effects Of Carbon Nanotube-Tethered Nanosphere Density On Amperometric Biosensing: Simulation And Experiment, Jonathan C. Claussen, James B. Hengenius, Monique M. Wickner, Timothy S. Fisher, David M. Umulis, D. Marshall Porterfield Jan 2011

Effects Of Carbon Nanotube-Tethered Nanosphere Density On Amperometric Biosensing: Simulation And Experiment, Jonathan C. Claussen, James B. Hengenius, Monique M. Wickner, Timothy S. Fisher, David M. Umulis, D. Marshall Porterfield

Jonathan C. Claussen

Nascent nanofabrication approaches are being applied to reduce electrode feature dimensions from the microscale to the nanoscale, creating biosensors that are capable of working more efficiently at the biomolecular level. The development of nanoscale biosensors has been driven largely by experimental empiricism to date. Consequently, the precise positioning of nanoscale electrode elements is typically neglected, and its impact on biosensor performance is subsequently overlooked. Herein, we present a bottom-up nanoelectrode array fabrication approach that utilizes low-density and horizontally oriented single-walled carbon nanotubes (SWCNTs) as a template for the growth and precise positioning of Pt nanospheres. We further develop a computational …