Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen Oct 2013

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics ...


Prism - Materials Simulation Tool, Ryan Widjaja, Marisol Koslowski Oct 2013

Prism - Materials Simulation Tool, Ryan Widjaja, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

MEMS (Micro-electromechanical System) is a combined electrical and mechanical nano-scaled device with rapidly growing applications. We have developed a contacting radio frequency capacitive MEMS that is commonly used as capacitive switches and contact actuators in PRISM (Prediction of Reliability, Integrity and Survivability of Microsystems) lab at Purdue University. Our research team has focused on creating a simulation of MEMS’s survivability towards crazing and cracking. Our particular objective in this project is to create a tool that can help users perform complex quantitative calculations regarding the properties of different materials. This tool will generate various plots visualizing the properties, such ...


Crystalline Cellulose – Atomistic Modeling Toolkit, Mateo Gomez, Pablo Zavattieri Dr. Oct 2013

Crystalline Cellulose – Atomistic Modeling Toolkit, Mateo Gomez, Pablo Zavattieri Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Nature has created efficient strategies to make materials with hierarchical internal structure that often exhibit exceptional mechanical properties. One such example is found in cellulose, in fact it is eight times stronger than stainless steel and advantage is that cellulose incredibly cheap, because processing is obtained from purified wood pulp (it is environmental friendly). The most prevalent modeling technique to study the fundamental mechanical behavior of the crystalline cellulose has been Molecular Dynamics (MD). As a predictive tool, MD allows us to study the behavior of crystalline cellulose at the atomic level, and as such, it accurately predicts the crystalline ...


Synthesizing Bismuth Telluride Nanowires In A Large Scale And Investigating The Energy Filtering Effect By Blending Bismuth Telluride Nanowires And Silver Nanoparticle In Thermoelectrics, Henka Darsono, Haiyu Fang, Yue Wu Oct 2013

Synthesizing Bismuth Telluride Nanowires In A Large Scale And Investigating The Energy Filtering Effect By Blending Bismuth Telluride Nanowires And Silver Nanoparticle In Thermoelectrics, Henka Darsono, Haiyu Fang, Yue Wu

The Summer Undergraduate Research Fellowship (SURF) Symposium

More than 50% of the energy sources becomes “waste” energy generally dissipated to the atmosphere in the form of heat. Thermoelectric effect is a conversion of temperature difference to electric voltage and can be used to convert the wasted heat to useful work. Nanomaterials have great potentials in the field of thermoelectric effect since they have properties that can allow higher efficiency in converting this wasted heat to electricity as compared to bulk materials. The purpose of this project is to develop a method to synthesize bismuth telluride (Bi2Te3) nanowires on a large scale and incorporate nanoinclusions ...