Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen Aug 2019

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Mechanical Engineering Publications

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Macromolecular Soft Templates For Synthesis And Self-Assembly Of Functional Nanomaterials, Srikanth Nayak Jan 2018

Macromolecular Soft Templates For Synthesis And Self-Assembly Of Functional Nanomaterials, Srikanth Nayak

Graduate Theses and Dissertations

Nanostructured composite materials made of organic matrices and inorganic nanoparticles (NPs) represent the new paradigm of functional hybrid materials. This dissertation is focused on the synthesis and self-assembly of NPs within organic matrices which act as templates, targeting the formation of use-inspired structures. Particularly, self-assembly of macromolecules such as proteins and polymers, and polymer-functionalized NPs is utilized to create ordered assemblies of NPs. Inspired by the formation of chains of magnetic NPs in a group of bacteria referred to as Magnetotactic bacteria, we used Mms6, a biomineralization protein, as a template towards the formation of self-assembled arrays of magnetic NPs ...


Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey Jul 2017

Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey

Civil, Construction and Environmental Engineering Conference Presentations and Proceedings

The monitoring of civil structures is critical in ensuring users' safety. Structural health monitoring (SHM) is the automation of this monitoring task. It is typically used to identify incipient damages through a spatio-temporal comparison in structural behaviors. Traditional sensors exhibit mechanical characteristics that are usually very different from those of the structures they monitor, which is a factor limiting their durability. Ideally, the material of a sensor would share the same mechanical characteristics as the material onto or into which it is installed. A solution is to fabricate multifunctional materials, capable of serving both structural and sensing functions, also known ...


Dynamic Self-Assembling Dna Nanosystems: Design And Engineering, Divita Mathur Jan 2016

Dynamic Self-Assembling Dna Nanosystems: Design And Engineering, Divita Mathur

Graduate Theses and Dissertations

Over the last thirty years, DNA has proven to be a great candidate for engineering nanoscale architectures. These DNA nanostructures have been applied in areas such as single-molecular analyses, nanopatterning, diagnostics and therapeutics. One of the most commonly-used techniques to engineer DNA-based two- and three-dimensional functional nanostructures is DNA origami, wherein a long single-stranded DNA (called scaffold) is folded into a predetermined shape with the help of a set of shorter oligonucleotides (called staples). This thesis discusses a brief overview of DNA nanotechnology (design, assembly and applications) and three primary projects undertaken in the area of dynamic self-assembling DNA nanosystems ...


Nanoneuromedicines For Degenerative, Inflammatory, And Infectious Nervous System Diseases, Howard E. Gendelman, Vellareddy Anatharam, Tatiana Bronich, Shivani Ghaisas, Huajun Jin, Anumantha G. Kanthasamy, Xinming Liu, Joellyn Mcmillan, R. Lee Mosley, Balagi Narasimhan, Surya K. Mallapragada Apr 2015

Nanoneuromedicines For Degenerative, Inflammatory, And Infectious Nervous System Diseases, Howard E. Gendelman, Vellareddy Anatharam, Tatiana Bronich, Shivani Ghaisas, Huajun Jin, Anumantha G. Kanthasamy, Xinming Liu, Joellyn Mcmillan, R. Lee Mosley, Balagi Narasimhan, Surya K. Mallapragada

Chemical and Biological Engineering Publications

Interest in nanoneuromedicine has grown rapidly due to the immediate need for improved biomarkers and therapies for psychiatric, developmental, traumatic, inflammatory, infectious and degenerative nervous system disorders. These, in whole or in part, are a significant societal burden due to growth in numbers of affected people and in disease severity. Lost productivity of the patient and his or her caregiver, and the emotional and financial burden cannot be overstated. The need for improved health care, treatment and diagnostics is immediate. A means to such an end is nanotechnology. Indeed, recent developments of health-care enabling nanotechnologies and nanomedicines range from biomarker ...


Design Of Novel Nano-Carriers For Multi-Enzyme Co-Localization, Feng Jia Jan 2013

Design Of Novel Nano-Carriers For Multi-Enzyme Co-Localization, Feng Jia

Graduate Theses and Dissertations

The widely existing MECs in Nature have inspired researchers to design synthetic analogs to promote the overall catalytic efficiency in vitro by co-localizing multiple enzymes to mimic the MECs' unique functionalities. A number of efforts have been devoted to designing synthetic MECs in the past couples of decades. This thesis work has focused on developing novel strategies based on enzyme immobilization to design nano-carriers for multi-enzyme co-localization to realize kinetics enhancement and strong control of spatial arrangement of the enzymes. Three distinct approaches have been designed using different attachment methods and platforms.

First, the multifunctional polystyrene nanoparticles were designed for ...


Nanotechnology Education—First Step In Implementing A Spiral Curriculum, Ganesh Balasubramanian, Vinod K. Lohani, Ishwar K. Puri, Scott W. Case, Roop L. Mahajan Jan 2011

Nanotechnology Education—First Step In Implementing A Spiral Curriculum, Ganesh Balasubramanian, Vinod K. Lohani, Ishwar K. Puri, Scott W. Case, Roop L. Mahajan

Ganesh Balasubramanian

A nanotechnology learning module was implemented into a freshman engineering course at Virginia Tech. The novelty of our approach is that an established spiral curriculum model has been employed, for the first time to the best of authors’ knowledge, to design the nanotechnology option. The module was piloted in a freshman class (180 students) during spring ‘08. The key components included (1) a prior knowledge survey, (2) a 40-minute in-class presentation on basic nanotechnology concepts, (3) an activity that involves nanoscale image analysis and the plotting of molecular forces usingLabVIEWsoftware,and(4)apost-modulesurvey.Lessonslearnedfromthepilotimplementationwereincorporated appropriately to expose roughly 1450 freshmen ...


An Alternative Method To Determining Optical Lever Sensitivity In Atomic Force Microscopy Without Tip-Sample Contact, Christopher J. Tourek, Sriram Sundararajan Jan 2010

An Alternative Method To Determining Optical Lever Sensitivity In Atomic Force Microscopy Without Tip-Sample Contact, Christopher J. Tourek, Sriram Sundararajan

Mechanical Engineering Publications

Force studies using atomic force microscopy generally require knowledge of the cantilever spring constants and the optical lever sensitivity. The traditional method of evaluating the optical lever sensitivity by pressing the tip against a hard surface can damage the tip, especially sharp ones. Here a method is shown to calculate the sensitivity without having to bring the tip into contact. Instead a sharpened tungsten wire is used to cause a point contact directly onto the cantilever and cause cantilever bending. Using beam theory, the sensitivity thus found can be converted to the equivalent sensitivity that would be obtained using the ...