Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Nanoscience and Nanotechnology

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam Aug 2018

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam

Theses and Dissertations

Growing population and climate change inevitably requires longstanding dependency on sustainable sources of energy that are conducive to ecological balance, economies of scale and reduction of waste heat. Plasmonic-photonic systems are at the forefront of offering a promising path towards efficient light harvesting for enhanced optoelectronics, sensing, and chemical separations. Two-dimensional (2-D) metamaterial arrays of plasmonic nanoparticles arranged in polymer lattices developed herein support thermoplasmonic heating at off-resonances (near infrared, NIR) in addition to regular plasmonic resonances (visible), which extends their applicability compared to random dispersions. Especially, thermal responses of 2-D arrays at coupled lattice resonance (CLR) wavelengths were comparable ...


Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos Jan 2017

Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos

Publicly Accessible Penn Dissertations

Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an ...


Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh Aug 2016

Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh

Theses and Dissertations

Nanostructures of noble metals show unique plasmonic behavior in the visible to near-infrared light range. Gold nanostructures exhibit a particularly strong plasmonic response for these wavelengths of light. In this study we have investigated optical enhancement and absorption of gold nanorods with different thickness using finite element method simulations. This study reports on the resonance wavelength of the sharp-corner and round-corner rectangles of constant length 100 nm and width 60 nm. The result shows that resonance wavelength depends on the polarization of the incident light; there also exists a strong dependence of the optical enhancement and absorption on the thickness ...


Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li Jan 2016

Refractive Index Engineering And Optical Properties Enhancement By Polymer Nanocomposites, Cheng Li

Doctoral Dissertations

The major part of this dissertation discusses the engineering of the refractive index of materials using solution-processable polymer nanocomposites and their applications in building optical components and devices. Three particular polymer nanocomposites have been introduced to achieve materials with tunable refractive indices and enhanced optical properties, which can be used to manipulate the behavior of light or electromagnetic radiations. In the first system, polyhedral oligomeric silsesquioxane (POSS)/polymer nanocomposites are developed. Thin films with tunable, low refractive indicies were fabricated from the composites. The mechanical strength of these films was characterized, and their application in antireflective coatings is discussed. In ...


Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel Aug 2014

Self-Assembly Of Gold Nanosphere Dimers By Inertial Force, George Andrew Christopher Sakhel

Theses and Dissertations

The morphology and composition of a nanoparticle (NP) play a critical role in determining the NP's properties and function. To date, researchers have created a myriad of NPs of different shapes, sizes, and compositions with interesting attributes and applications ushering a revolution in medicine, electronics, microscopy, and microfluidics.

In this study, gold (Au) nanosphere dimers (NSDs) have been synthesized through a novel self-assembly method. These particles were created from Au NPs mono-dispersed in aqueous solution via a process of centrifugation and capping agent replacement. Au NSDs consist of two Au NPs combined together with minimal gaps between them. Optical ...


Refractive Index Chemical Sensing With Noble Metal Nanoparticles, Phillip Blake Dec 2012

Refractive Index Chemical Sensing With Noble Metal Nanoparticles, Phillip Blake

Theses and Dissertations

Chemical sensing is a key component in modern society, especially in engineering applications. Because of their widespread impact, improvements to chemical sensors are a significant area of research. One class of sensors, plasmonic sensors, is being heavily researched because of their ability to detect low levels of analyte in near real time without destroying the analyte. This work studies a new class of plasmonic sensor that utilizes diffractive coupling to improve sensor performance. Specifically, this work outlines the first study of diffractive coupling sensors with typical nanoparticle shapes. Sensitivity of this new class of sensor is directly compared to typical ...


Towards Sustainable Development Of Nanomanufacturing, Sasikumar Ramdas Naidu May 2012

Towards Sustainable Development Of Nanomanufacturing, Sasikumar Ramdas Naidu

Doctoral Dissertations

"Sustainability" is a buzz word these days not just among regulatory agencies but even with corporations, as evident by the release of annual sustainability report by a large number of firms. Companies are starting to portray profit making along with corporate environmental responsibility.

Nanotechnology and nanomanufacturing which holds a lot of promise for development in a multitude of fields in science and engineering is the new kid on the block and carries a lot of apprehension due to public concern about their potential unwanted side effects that may result in the case of an untoward incident or lack of oversight ...


Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung Aug 2011

Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung

Electronic Thesis and Dissertation Repository

The discovery of electrically conductive bacterial nanowires from a broad range of microbes provides completely new insights into microbial physiology. Shewanella oneidensis strain MR-1, a dissimilatory metal-reducing bacterium, produces extracellular bacterial nanowires up to tens of micrometers long, with a lateral dimension of ~10 nm. The Shewanella bacterial nanowires are efficient electrical conductors as revealed by scanning probe techniques such as CP-AFM and STM.

Direct electrical transport measurements along Shewanella nanowires reveal a measured nanowire resistivity on the order of 1 Ω∙cm. With electron transport rates up to 109/s at 100 mV, bacterial nanowires can serve as ...


Diodes For Optical Rectennas, Sachit Grover Jan 2011

Diodes For Optical Rectennas, Sachit Grover

Electrical Engineering Graduate Theses & Dissertations

Two types of ultra-fast diode are fabricated, characterized, and simulated for use in optical rectennas. A rectenna consists of an antenna connected to a diode in which the electromagnetic radiation received by the antenna is rectified in the diode. I have investigated metal/insulator/metal (MIM) tunnel diodes and a new, geometric diode for use in rectenna-based infrared detectors and solar cells. Factors influencing the performance of a rectenna are analyzed. These include DC and optical-frequency diode-characteristics, circuit parameters, signal amplitude, and coherence of incoming radiation.

To understand and increase the rectification response of MIM-based rectennas, I carry out an ...


Artificial And Natural Nucleic Acid Self Assembling Systems, Marcus Wood Jan 2011

Artificial And Natural Nucleic Acid Self Assembling Systems, Marcus Wood

Wayne State University Dissertations

Nucleic acids are good candidates for nanomachine construction. They participate in all the processes of life, and so can function as structural building blocks and dynamic catalysts. However, to use nucleic acids as nanomachines, a better understanding of their material properties, how to design structures using them, and their dynamics is needed. We have tried to address these issues, in a small way, with nucleic acid force field development, an attempt at nanostructural design and synthesis using DNA, and a study of the RNA/protein regulatory dynamics of the tryptophan regulatory attenuation protein.