Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology

PDF

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 107

Full-Text Articles in Nanoscience and Nanotechnology

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen Aug 2019

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Mechanical Engineering Publications

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen Jul 2019

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Carmen Gomes

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen Jul 2019

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Jonathan C. Claussen

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Group Iv Environmentally Benign, Inexpensive Semiconductor Nanomaterials For Solar Cells, Lisa Je Jun 2019

Group Iv Environmentally Benign, Inexpensive Semiconductor Nanomaterials For Solar Cells, Lisa Je

ENGS 86 Independent Projects (AB Students)

Modern solar cells are composed of silicon, cadmium tellurium, and copper indium gallium diselenide. While these materials are efficient, elements such as cadmium and indium are rare and expensive. To make this renewable energy source more inexpensive and sustainable, the Liu Optics lab is substituting expensive rare earth metals for more commonly found transition state metals. Work has been done to replace the solar cell layers composed of cadmium and gallium to replace them with glass, silicon, and/or thin films. Common metals such as germanium and tin are investigated and characterized to provide a platform for solar cell components.


Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht Jun 2019

Nano-Enhanced Composite Membranes For Water Desalination, Benjamin Fredrik Victor Sundling Von Fürstenrecht

Materials Engineering

In theory single walled carbon nanotubes (SWCNT) will aid in ion rejection due hydrophobicity and smoothness of the SWCNT. An efficient means of water desalination utilizing SWCNT in a membrane seems plausible. A lyotropic liquid crystal (LLC) solution was made with a synthesized polymerizable surfactant methacryloxy ethyl hexadecyl dimethyl ammonium bromide (C16MA) to help with vertical alignment of SWCNT. Due to SWCNT lack of solubility and tendency to agglomerate in water, a dispersion performed using an inert surfactant centrimonium bromide (CTAB) to make sure that the SWCNT were homogeneously dispersed in the solution without altering the hexagonal packing factor of ...


Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam Aug 2018

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam

Theses and Dissertations

Growing population and climate change inevitably requires longstanding dependency on sustainable sources of energy that are conducive to ecological balance, economies of scale and reduction of waste heat. Plasmonic-photonic systems are at the forefront of offering a promising path towards efficient light harvesting for enhanced optoelectronics, sensing, and chemical separations. Two-dimensional (2-D) metamaterial arrays of plasmonic nanoparticles arranged in polymer lattices developed herein support thermoplasmonic heating at off-resonances (near infrared, NIR) in addition to regular plasmonic resonances (visible), which extends their applicability compared to random dispersions. Especially, thermal responses of 2-D arrays at coupled lattice resonance (CLR) wavelengths were comparable ...


A New Approach To The Development Of An Rsv Anti-Viral Targeted Nanocarrier For Dual Inhibition Of Viral Infection And Replication, Anthony N. Singer Jun 2018

A New Approach To The Development Of An Rsv Anti-Viral Targeted Nanocarrier For Dual Inhibition Of Viral Infection And Replication, Anthony N. Singer

Graduate Theses and Dissertations

Respiratory Syncytial Virus (RSV) is a potentially life-threatening respiratory pathogen that infects approximately 64 million children and immunocompromised adults globally per year. Currently, there is a need for prophylactic and therapeutic approaches effective against primary and secondary RSV infections. This project focuses on the development of a simple, smart, and scalable anti-RSV nanotherapeutic that combines novel cellular antiviral defense mechanisms targeting the inhibition of viral fusion and replication. An ICAM-1 targeted liposomal nanocarrier will be synthesized and coated with a layer of chitosan containing the anti-fusion HR2-D peptide as an extracellular defense mechanism. Additionally, chitosan complexed to dual expressing short ...


Immunostimulatory Effects Of Antigen-Conjugated Inp/Zns Quantum Dot Nanoparticles In An Avian Model, Christopher Lyle May 2018

Immunostimulatory Effects Of Antigen-Conjugated Inp/Zns Quantum Dot Nanoparticles In An Avian Model, Christopher Lyle

Theses and Dissertations

Due to their unique physicochemical and enhanced immunostimulatory properties, quantum dot (QD) nanoparticles have shown increasing promise in biomedical research applications including bioimaging, drug delivery, and as vaccine adjuvants. Toxicity, however, remains a concern for the use of QD in these applications and thus, there is an increased demand for effective in vitro and in vivo systems to measure the bioactivity of QD. In this study in vitro and in vivo chicken models were used to investigate the effects of QD on innate and adaptive immunity. Chicken macrophage cultures were treated in vitro with QD to measure macrophage activation and ...


Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey Feb 2018

Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey

Simon Laflamme

The monitoring of civil structures is critical in ensuring users' safety. Structural health monitoring (SHM) is the automation of this monitoring task. It is typically used to identify incipient damages through a spatio-temporal comparison in structural behaviors. Traditional sensors exhibit mechanical characteristics that are usually very different from those of the structures they monitor, which is a factor limiting their durability. Ideally, the material of a sensor would share the same mechanical characteristics as the material onto or into which it is installed. A solution is to fabricate multifunctional materials, capable of serving both structural and sensing functions, also known ...


Macromolecular Soft Templates For Synthesis And Self-Assembly Of Functional Nanomaterials, Srikanth Nayak Jan 2018

Macromolecular Soft Templates For Synthesis And Self-Assembly Of Functional Nanomaterials, Srikanth Nayak

Graduate Theses and Dissertations

Nanostructured composite materials made of organic matrices and inorganic nanoparticles (NPs) represent the new paradigm of functional hybrid materials. This dissertation is focused on the synthesis and self-assembly of NPs within organic matrices which act as templates, targeting the formation of use-inspired structures. Particularly, self-assembly of macromolecules such as proteins and polymers, and polymer-functionalized NPs is utilized to create ordered assemblies of NPs. Inspired by the formation of chains of magnetic NPs in a group of bacteria referred to as Magnetotactic bacteria, we used Mms6, a biomineralization protein, as a template towards the formation of self-assembled arrays of magnetic NPs ...


Can Schools Use Nanotechnology To Prevent Cell Phones From Ringing, Sarah C. Boyer Sep 2017

Can Schools Use Nanotechnology To Prevent Cell Phones From Ringing, Sarah C. Boyer

Oklahoma Journal of Law and Technology

No abstract provided.


Irradiation-Induced Nanocluster Evolution, Didier Ishimwe, Matthew J. Swenson, Janelle P. Wharry Aug 2017

Irradiation-Induced Nanocluster Evolution, Didier Ishimwe, Matthew J. Swenson, Janelle P. Wharry

The Summer Undergraduate Research Fellowship (SURF) Symposium

Oxide dispersion strengthened steel (ODS) and commercial ferritic-martensitic (F-M) alloys are widely accepted candidate structural materials for designing advanced nuclear reactors. Nanoclusters embedded in the steel matrix are key microstructural features of both alloy types. Irradiation from nuclear fusion and fission affects the morphology of these nanoparticles, altering the performance of the alloys and potentially decreasing their usable lifetime. Thus, it is important to understand the effect of irradiation on these nanoparticles in order to predict long-term nuclear reactor performance. It was found that the evolution of nanoclusters in each material is different depending on the experimental irradiation parameters. The ...


Advanced Purification And Direct-Write 3d Nanoprinting Via Focused Electron Beam Induced Deposition, Brett Bloxton Lewis Aug 2017

Advanced Purification And Direct-Write 3d Nanoprinting Via Focused Electron Beam Induced Deposition, Brett Bloxton Lewis

Doctoral Dissertations

This dissertation addresses three difficulties with focused electron beam induced deposition preventing broader application; purity, spatial control, and mechanical characterization.

Focused electron beam induced deposition (FEBID) has many advantages as a nanoscale fabrication tool. It is compatible for implementation into current lithographic techniques and has the potential to direct-write in a single step nanostructures of a high degree of complexity. FEBID is a very versatile tool capable of fabricating structures of many different compositions ranging from insulating oxides to conducting metals.

Due to the complexity of the technique and the difficulty in directly measuring many important variables, FEBID has remained ...


Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey Jul 2017

Novel Nanocomposite Clay Brick For Strain Sensing In Structural Masonry, F. Ubertini, A. D'Alessandro, A. L. Materazzi, Simon Laflamme, Austin Downey

Civil, Construction and Environmental Engineering Conference Presentations and Proceedings

The monitoring of civil structures is critical in ensuring users' safety. Structural health monitoring (SHM) is the automation of this monitoring task. It is typically used to identify incipient damages through a spatio-temporal comparison in structural behaviors. Traditional sensors exhibit mechanical characteristics that are usually very different from those of the structures they monitor, which is a factor limiting their durability. Ideally, the material of a sensor would share the same mechanical characteristics as the material onto or into which it is installed. A solution is to fabricate multifunctional materials, capable of serving both structural and sensing functions, also known ...


Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das Apr 2017

Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

No abstract provided.


Exceeding Conventional Photovoltaic Efficiency Limits Using Colloidal Quantum Dots, Gregory F. Pach Apr 2017

Exceeding Conventional Photovoltaic Efficiency Limits Using Colloidal Quantum Dots, Gregory F. Pach

Electrical, Computer & Energy Engineering Graduate Theses & Dissertations

Colloidal quantum dots (QDs) are a widely investigated field of research due to their highly tunable nature in which the optical and electronic properties of the nanocrystal can be manipulated by merely changing the nanocrystal’s size. Specifically, colloidal quantum dot solar cells (QDSCs) have become a promising candidate for future generation photovoltaic technology. Quantum dots exhibit multiple exciton generation (MEG) in which multiple electron-hole pairs are generated from a single high-energy photon. This process is not observed in bulk-like semiconductors and allows for QDSCs to achieve theoretical efficiency limits above the standard single-junction Shockley-Queisser limit. However, the fast expanding ...


Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson Mar 2017

Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson

Thomas E. Wilson

Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.


Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos Jan 2017

Nano/Biosensors Based On Large-Area Graphene, Pedro Jose Ducos

Publicly Accessible Penn Dissertations

Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an ...


An Annotated Corpus With Nanomedicine And Pharmacokinetic Parameters, Nastassja Lewinski, Ivan Jimenez, Bridget Mcinnes Jan 2017

An Annotated Corpus With Nanomedicine And Pharmacokinetic Parameters, Nastassja Lewinski, Ivan Jimenez, Bridget Mcinnes

Chemical and Life Science Engineering Publications

A vast amount of data on nanomedicines is being generated and published, and natural language processing (NLP) approaches can automate the extraction of unstructured text-based data. Annotated corpora are a key resource for NLP and information extraction methods which employ machine learning. Although corpora are available for pharmaceuticals, resources for nanomedicines and nanotechnology are still limited. To foster nanotechnology text mining (NanoNLP) efforts, we have constructed a corpus of annotated drug product inserts taken from the US Food and Drug Administration’s Drugs@FDA online database. In this work, we present the development of the Engineered Nanomedicine Database corpus to ...


Optical Sub-Diffraction Limited Focusing For Confined Heating And Lithography, Luis M. Traverso Dec 2016

Optical Sub-Diffraction Limited Focusing For Confined Heating And Lithography, Luis M. Traverso

Open Access Dissertations

Electronics and nanotechnology is constantly demanding a decrease in size of fabricated nanoscale features. This decrease in size has become much more difficult recently due to the limited resolution of optical systems that are fundamental to many nanofabrication methods. A lot of effort has been made to fabricate devices smaller than the diffraction limit of light. Creating devices that are capable of confining fields by means of interference patterns of propagating wave modes and surface plasmon, has proven successful to confine light into smaller spot sizes.

Zone plate diffraction lenses generate spots with dimensions very close to the diffraction limit ...


Exploring Public Values Implications Of The I-Corps Program, Jan Youtie, Philip Shapira Oct 2016

Exploring Public Values Implications Of The I-Corps Program, Jan Youtie, Philip Shapira

Philip Shapira

This paper examines how the concept of public values can be operationalized in an ongoing public initiative to stimulate innovation in an emerging technology. Our study focuses on Innovation Corps (I-Corps)—a program initiated in 2011 by the National Science Foundation (NSF) to accelerate the process of commercializing science-driven discoveries. The I-Corps method has since spread rapidly across multiple US agencies. Separately, there has also been heightened attention to the early anticipation and mitigation of the implications of emerging science and technology. Drawing on the case of nanotechnology, the paper considers how public values related to nanotechnology commercialization can be ...


Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun Oct 2016

Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun

Doctoral Dissertations

Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery.

In this study, a drug delivery system was built based on halloysite ...


Performance Of Tf-Vls Grown Inp Photovoltaic Cells, Junyan Shi, Yubo Sun, Peter Bermel Aug 2016

Performance Of Tf-Vls Grown Inp Photovoltaic Cells, Junyan Shi, Yubo Sun, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

A grand challenge of photovoltaics (PV) is to find materials offering a promising combination of low costs and high efficiencies. While III-V material-based PV cells have set many world records, often their cost is much greater than other commercial cells. To help address this gap, thin-film vapor-liquid-solid (TF-VLS) grown Indium Phosphide (InP) PV cells have recently been developed, which both eliminate a key source of high costs and offer a direct bandgap of 1.34eV with potential to approach maximum theoretical efficiencies. However, the unanticipated phenomenon of open circuit voltage (Voc) degradation has prevented TF-VLS grown InP PV cells ...


Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh Aug 2016

Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh

Theses and Dissertations

Nanostructures of noble metals show unique plasmonic behavior in the visible to near-infrared light range. Gold nanostructures exhibit a particularly strong plasmonic response for these wavelengths of light. In this study we have investigated optical enhancement and absorption of gold nanorods with different thickness using finite element method simulations. This study reports on the resonance wavelength of the sharp-corner and round-corner rectangles of constant length 100 nm and width 60 nm. The result shows that resonance wavelength depends on the polarization of the incident light; there also exists a strong dependence of the optical enhancement and absorption on the thickness ...


Investigation Of Carbon Nanomaterials Embedded In A Cementitious Matrix, Clarissa A. Roe Jul 2016

Investigation Of Carbon Nanomaterials Embedded In A Cementitious Matrix, Clarissa A. Roe

Masters Theses & Specialist Projects

The objective of this thesis was to investigate whether the addition of carbon nanofibers had an effect on the splitting tensile strength of Hydro-Stone gypsum concrete. The carbon nanofibers used were single-walled carbon nanotubes (SWNT), buckminsterfullerene (C60), and graphene oxide (GO). Evidence of the nanofibers interacting with gypsum crystals in a connective manner was identified in both 1 mm thick concrete discs and concrete columns possessing a height of 2 in and a diameter of 1 in. Before imaging, the columns were subjected to a splitting tensile strength test. The results illustrate that while there is a general decrease in ...


Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu Jun 2016

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review ...


Al/Ti Nanostructured Multilayers: From Mechanical, Tribological, To Corrosion Properties, Sina Izadi Apr 2016

Al/Ti Nanostructured Multilayers: From Mechanical, Tribological, To Corrosion Properties, Sina Izadi

Graduate Theses and Dissertations

Nanostructured metallic multilayers (NMMs) are well-known for their high strength in smaller bilayer thicknesses. Six Al/Ti (NMM) with different individual layer thickness were tested for their mechanical hardness using a nanoindentation tool. Individual layer thicknesses were chosen carefully to cover the whole confined layer slip (CLS) model. Nano-hardness had a reverse relation with the square root of individual layer thickness and reached a steady state at ~ 5 nm bilayer thickness. Decreasing the layer bilayer thickness from ~ 104 nm to ~ 5 nm, improved the mechanical hardness up to ~ 101%. Residual stresses were measured using grazing incident X-ray diffraction (GIXRD). Effect ...


Clay Nanotube Composites For Antibacterial Nanostructured Coatings, Christen J. Boyer Apr 2016

Clay Nanotube Composites For Antibacterial Nanostructured Coatings, Christen J. Boyer

Doctoral Dissertations

A surging demand for the development of new antimicrobial nanomaterials exists due to the frequency of medical device-associated infections and the transfer of pathogens from highly touched objects. Naturally occurring halloysite clay nanotubes (HNTs) have shown to be ideal particles for polymer reinforcement, time-release drug delivery, nano-reactor synthesis, and as substrate material for nanostructured coatings.

This research demonstrates the feasibility of a novel method for coating HNTs with metals for antibacterial applications. The first ever ability to coat HNTs through electrolysis was developed for customizable and multi-functional antibacterial nanoparticle platforms. HNTs were investigated as substrate for the deposition of copper ...


Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal, Angelo Peter Karavolos Jan 2016

Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal, Angelo Peter Karavolos

Open Access Theses & Dissertations

This research effort develops an integrated system for CO2 removal and O2 production. A unique material, dodeca-tungsto-phosphoric acid (H3PO4W12O3; henceforth referred to as DTPA) is mixed with tetra-ethyl-ortho-silicate Si(OC2H5)4 or TEOS. This mixture exhibits unique properties of heat absorption and high electrical conductivity. In the system described herein, the DTPA resides within a cross linked arrangement of TEOS. The DTPA furnishes a source of O2, while the TEOS furnishes structural support for the large DTPA crystals. In addition, the large amount of H2O within the crystal also adsorbs CO2. It can also be cross-linked with other polymers such ...


Dynamic Self-Assembling Dna Nanosystems: Design And Engineering, Divita Mathur Jan 2016

Dynamic Self-Assembling Dna Nanosystems: Design And Engineering, Divita Mathur

Graduate Theses and Dissertations

Over the last thirty years, DNA has proven to be a great candidate for engineering nanoscale architectures. These DNA nanostructures have been applied in areas such as single-molecular analyses, nanopatterning, diagnostics and therapeutics. One of the most commonly-used techniques to engineer DNA-based two- and three-dimensional functional nanostructures is DNA origami, wherein a long single-stranded DNA (called scaffold) is folded into a predetermined shape with the help of a set of shorter oligonucleotides (called staples). This thesis discusses a brief overview of DNA nanotechnology (design, assembly and applications) and three primary projects undertaken in the area of dynamic self-assembling DNA nanosystems ...