Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology

Mechanical Engineering

Purdue University

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Optical Sub-Diffraction Limited Focusing For Confined Heating And Lithography, Luis M. Traverso Dec 2016

Optical Sub-Diffraction Limited Focusing For Confined Heating And Lithography, Luis M. Traverso

Open Access Dissertations

Electronics and nanotechnology is constantly demanding a decrease in size of fabricated nanoscale features. This decrease in size has become much more difficult recently due to the limited resolution of optical systems that are fundamental to many nanofabrication methods. A lot of effort has been made to fabricate devices smaller than the diffraction limit of light. Creating devices that are capable of confining fields by means of interference patterns of propagating wave modes and surface plasmon, has proven successful to confine light into smaller spot sizes.

Zone plate diffraction lenses generate spots with dimensions very close to the diffraction limit. …


3d Printing Nanostructured Thermoelectric Device, Qianru Jia, Collier Miers, Amy Marconnet Aug 2015

3d Printing Nanostructured Thermoelectric Device, Qianru Jia, Collier Miers, Amy Marconnet

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermoelectric materials convert thermal energy to electrical energy and vice versa. Thermoelectrics have attracted much attention and research efforts due to the possibility solving electronic cooling problems and reducing energy consumption through waste heat recovery. The efficiency of a thermoelectric material is determined by the dimensionless figure of merit ZT, which depends on both thermal and electrical properties. Researchers have worked for several decades to improve the ZT, but there had been little progress until nanomaterials and nanofabrication became widely available. Nanotechnology makes the ZT enhancement attainable by disconnecting the linkage between thermal and electrical transport. Printing customized, flexible thermoelectric …


Granular Matter: Microstructural Evolution And Mechanical Response, Aashish Ghimire, Ishan Srivastava, Timothy S. Fisher Aug 2014

Granular Matter: Microstructural Evolution And Mechanical Response, Aashish Ghimire, Ishan Srivastava, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Heterogeneous (nano) composites, manufactured by the densification of variously sized grains, represent an important and ubiquitous class of technologically relevant materials. Typical grain sizes in such materials range from macroscopic to a few nanometers. The morphology exhibited by such disordered materials is complex and intricately connected with its thermal and electrical transport properties. It is important to quantify the geometric features of these materials and simulate the fabrication process. Additionally, granular materials exhibit complex structural and mechanical properties that crucially govern their reliability during industrial use. In this work, we simulate the densification of soft deformable grains from a low-density …