Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Nanoscience and Nanotechnology

Random Lasing In Nano-Crystalline Zinc-Oxide Films, Benito Reynaldo Resendiz Jan 2022

Random Lasing In Nano-Crystalline Zinc-Oxide Films, Benito Reynaldo Resendiz

Dissertations and Theses

In this thesis, we explore the preparation of random lasers (RLs) using solution-deposited, randomly packed nano-particle films of zinc oxide (ZnO) impregnated with silicon dioxide (SiO2) nanospheres. RLs have their scatterers randomly oriented, while their lasing comes from light propagating along closed paths through the scattering environment. It is shown here that random lasing is readily observed in films made of submicron sized ZnO particles. Adding transparent SiO2 nanospheres to the films, we show there is an effective improvement of the lasing that is observable in all of the samples spectra. Specifically, we found that the lasing …


Synthesis And Assessment Of Radiotherapy-Enhancing Nanoparticles, Hayden Winter Aug 2020

Synthesis And Assessment Of Radiotherapy-Enhancing Nanoparticles, Hayden Winter

Dissertations and Theses

Radiation Therapy (RT) is a common treatment for cancerous lesions that acts by ionizing matter in the affected tissue, causing cell death. The disadvantage of RT is that it is most often delivered via an external beam of radiation which must pass through healthy tissues to reach the target site, ionizing matter within healthy tissues as well. To address this drawback, techniques are being developed for increasing RT-induced cell death in a target tissue while minimizing cell death in surrounding tissues. This effect is known as radiation dose enhancement or RT enhancement.

The approach to RT enhancement studied in this …


Expanding The Versatility Of Nano Assembled Capsules As Platform Of Potential High Payload Mri Contrast Agents, Annah Farashishiko Jul 2016

Expanding The Versatility Of Nano Assembled Capsules As Platform Of Potential High Payload Mri Contrast Agents, Annah Farashishiko

Dissertations and Theses

Magnetic resonance imaging (MRI) has become a powerful clinical modality in diagnostic medicine. It is non-invasive and offers high spatial and temporal resolution. The goal of molecular imaging is to reveal the pathophysiology underlying the observed anatomy and diagnose diseases. The detection of pathological biomarkers can lead to early recognition of diseases and improved monitoring for recurrence. Clinically available contrast agents are limited in their discrimination of contrast between tissues and they tend to have very high detection limits. Because biomarkers are very low in concentration there is a need for high payload deposition of contrast agent (CA) and targeted …


Photoluminescent Silicon Nanoparticles: Fluorescent Cellular Imaging Applications And Photoluminescence (Pl) Behavior Study, Sheng-Kuei Chiu Aug 2015

Photoluminescent Silicon Nanoparticles: Fluorescent Cellular Imaging Applications And Photoluminescence (Pl) Behavior Study, Sheng-Kuei Chiu

Dissertations and Theses

Molecular fluorophores and semiconductor quantum dots (QDs) have been used as cellular imaging agents for biomedical research, but each class has challenges associated with their use, including poor photostability or toxicity. Silicon is a semiconductor material that is inexpensive and relatively environmental benign in comparison to heavy metal-containing quantum dots. Thus, red-emitting silicon nanoparticles (Si NPs) are desirable to prepare for cellular imaging application to be used in place of more toxic QDs. However, Si NPs currently suffer poorly understood photoinstability, and furthermore, the origin of the PL remains under debate.

This dissertation first describes the use of diatomaceous earth …


Optical Properties Of Nanostructured Dielectric Coatings, Brandon Giatti Aug 2014

Optical Properties Of Nanostructured Dielectric Coatings, Brandon Giatti

Dissertations and Theses

Solar cells have extrinsic losses from a variety of sources which can be minimized by optimization of the design and fabrication processes. Reflection from the front surface is one such loss mechanism and has been managed in the past with the usage of planar antireflection coatings. While effective, these coatings are each limited to a single wavelength of light and do not account for varying incident angles of the incoming light source. Three-dimensional nanostructures have shown the ability to inhibit reflection for differing wavelengths and angles of incidence. Nanocones were modeled and show a broadband, multi-angled reflectance decrease due to …


Structural Identification Of Cubic Iron-Oxide Nanocrystal Mixtures: X-Ray Powder Diffraction Versus Quasi-Kinematic Transmission Electron Microscopy, Peter Moeck Mar 2008

Structural Identification Of Cubic Iron-Oxide Nanocrystal Mixtures: X-Ray Powder Diffraction Versus Quasi-Kinematic Transmission Electron Microscopy, Peter Moeck

Physics Faculty Publications and Presentations

Two novel (and proprietary) strategies for the structural identification of a nanocrystal from either a single high-resolution (HR) transmission electron microscopy (TEM) image or a single precession electron diffraction pattern are proposed and their advantages discussed in comparison to structural fingerprinting from powder X-ray diffraction patterns. Simulations for cubic magnetite and maghemite nanocrystals are used as examples.


Nano Quasicrystal Formation And Local Atomic Structure In Zr––Pd And Zr––Pt Binary Metallic Glasses, Junji Saida, Takashi Sanada, Shigeo Sato, Muneyuki Imafuku, Chunfei Li, Akihisa Inoue Jan 2008

Nano Quasicrystal Formation And Local Atomic Structure In Zr––Pd And Zr––Pt Binary Metallic Glasses, Junji Saida, Takashi Sanada, Shigeo Sato, Muneyuki Imafuku, Chunfei Li, Akihisa Inoue

Center for Electron Microscopy and Nanofabrication Publications and Presentations

Formation of the nanoscale icosahedral quasicrystalline phase (I-phase) in the melt-spun Zr70Pd30 and Zr80Pt20 binary metallic glasses were reported. Local atomic structure in the glassy and quasicrystal (QC)-formed states were also analyzed by XRD and EXAFS measurements in order to investigate the formation mechanism of QC phase. The distorted icosahedral-like local structure can be identified around Zr atom in the Zr70Pd30 metallic glass. In the QC formation process, a change of local environment around Zr is detected, in which the approximately one Zr atom substitutes for one Pd atom. In contrast, …


Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf Nov 2006

Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf

Physics Faculty Publications and Presentations

Aspects of transmission electron goniometry are discussed. Combined with high resolution phase contrast transmission electron microscopy (HRTEM) and atomic resolution scanning TEM (STEM) in the atomic number contrast (Z-STEM) or the phase contrast bright field mode, transmission electron goniometry offers the opportunity to develop dedicated methods for the crystallographic characterization of nanocrystals in three dimensions. The relationship between transmission electron goniometry and electron tomography for materials science applications is briefly discussed. Internet based java applets that facilitate the application of transmission electron goniometry for cubic crystals with calibrated tilt-rotation and double-tilt specimen holders/goniometers are mentioned. The so called cubic-minimalistic tilt …


Making Sense Of Nanocrystal Lattice Fringes, P. Fraundorf, Wentao Qin, Peter Moeck, Eric Mandell Jan 2005

Making Sense Of Nanocrystal Lattice Fringes, P. Fraundorf, Wentao Qin, Peter Moeck, Eric Mandell

Physics Faculty Publications and Presentations

The orientation dependence of thin-crystal lattice fringes can be gracefully quantified using fringe-visibility maps, a direct-space analog of Kikuchi maps [Nishikawa and Kikuchi, Nature (London) 121, 1019 (1928)]. As in navigation of reciprocal space with the aid of Kikuchi lines, fringe-visibility maps facilitate acquisition of crystallographic information from lattice images. In particular, these maps can help researchers to determine the three-dimensional lattice of individual nanocrystals, to 'fringe-fingerprint' collections of randomly oriented particles, and to measure local specimen thickness with only a modest tilt. Since the number of fringes in an image increases with maximum spatial-frequency squared, these strategies (with help …