Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Self-Consistent Multiscale Modeling In The Presence Of Inhomogeneous Fields, Ruichang Xiong, Rebecca L. Empting, Ian C. Morris, David J. Keffer Nov 2009

Self-Consistent Multiscale Modeling In The Presence Of Inhomogeneous Fields, Ruichang Xiong, Rebecca L. Empting, Ian C. Morris, David J. Keffer

Faculty Publications and Other Works -- Chemical and Biomolecular Engineering

Molecular dynamics (MD) simulations of a Lennard–Jones fluid in an inhomogeneous external field generate steady-state profiles of density and pressure with nanoscopic heterogeneities. The continuum level of mass, momentum, and energy transport balances is capable of reproducing the MD profiles only when the equation of state for pressure as a function of density is extracted directly from the molecular level of description. We show that the density profile resulting from simulation is consistent with both a molecular-level theoretical prediction from statistical mechanics as well as the solution of the continuum-level set of differential equations describing the conservation of mass and …


Self-Consistent Multiscale Modeling In The Presence Of Inhomogeneous Fields, David Keffer Jan 2009

Self-Consistent Multiscale Modeling In The Presence Of Inhomogeneous Fields, David Keffer

David Keffer

Molecular dynamics (MD) simulations of a Lennard–Jones fluid in an inhomogeneous external field generate steady-state profiles of density and pressure with nanoscopic heterogeneities. The continuum level of mass, momentum, and energy transport balances is capable of reproducing the MD profiles only when the equation of state for pressure as a function of density is extracted directly from the molecular level of description. We show that the density profile resulting from simulation is consistent with both a molecular-level theoretical prediction from statistical mechanics as well as the solution of the continuum-level set of differential equations describing the conservation of mass and …