Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Electrospun Thymosin Beta-4 Loaded Plga/Pla Nanofiber/ Microfiber Hybrid Yarns For Tendon Tissue Engineering Application, Shaohua Wu, Rong Zhou, Fang Zhou, Philipp N. Streubel, Shaojuan Chen, Bin Duan Jan 2020

Electrospun Thymosin Beta-4 Loaded Plga/Pla Nanofiber/ Microfiber Hybrid Yarns For Tendon Tissue Engineering Application, Shaohua Wu, Rong Zhou, Fang Zhou, Philipp N. Streubel, Shaojuan Chen, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

Microfiber yarns (MY) have been widely employed to construct tendon tissue grafts. However, suboptimal ultrastructure and inappropriate environments for cell interactions limit their clinical application. Herein, we designed a modified electrospinning device to coat poly(lactic-co-glycolic acid) PLGA nanofibers onto polylactic acid (PLA) MY to generate PLGA/PLA hybrid yarns (HY), which had a well-aligned nanofibrous structure, resembling the ultrastructure of native tendon tissues and showed enhanced failure load compared to PLA MY. PLGA/PLA HY significantly improved the growth, proliferation, and tendon-specific gene expressions of human adipose derived mesenchymal stem cells (HADMSC) compared to PLA MY. Moreover, thymosin beta-4 (Tβ4) loaded PLGA/PLA …


Bacterial Isolation By Lectin-Modified Microengines, Susana Campuzano, Jahir Orozco, Daniel Kagan, Maria Guix, Wei Gao, Sirilak Sattayasamitsathit, Jonathan C. Claussen, Arben Merkoci, Joseph Wang Jan 2012

Bacterial Isolation By Lectin-Modified Microengines, Susana Campuzano, Jahir Orozco, Daniel Kagan, Maria Guix, Wei Gao, Sirilak Sattayasamitsathit, Jonathan C. Claussen, Arben Merkoci, Joseph Wang

Jonathan C. Claussen

New template-based self-propelled gold/nickel/polyaniline/platinum (Au/Ni/PANI/Pt) microtubular engines, functionalized with the Concanavalin A (ConA) lectin bioreceptor, are shown to be extremely useful for the rapid, real-time isolation of Escherichia coli (E. coli) bacteria from fuel-enhanced environmental, food, and clinical samples. These multifunctional microtube engines combine the selective capture of E. coli with the uptake of polymeric drug-carrier particles to provide an attractive motion-based theranostics strategy. Triggered release of the captured bacteria is demonstrated by movement through a low-pH glycine-based dissociation solution. The smaller size of the new polymer-metal microengines offers convenient, direct, and label-free optical visualization of the captured bacteria and …