Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Nanoscience and Nanotechnology

Development Of A Nonlinear Model For The Prediction Of Response Times Of Glucose Affinity Sensors Using Concanavalin A And Dextran And The Development Of A Differential Osmotic Glucose Affinity Sensor, Louis G. Reis Jan 2017

Development Of A Nonlinear Model For The Prediction Of Response Times Of Glucose Affinity Sensors Using Concanavalin A And Dextran And The Development Of A Differential Osmotic Glucose Affinity Sensor, Louis G. Reis

Doctoral Dissertations

With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell …


Synthesis, Characterization, And Activity Of Co/Fe Alumina/Silica Supported Ft Catalysts And The Study Of Promoter Effect Of Ruthenium, Sunday Azubike Esumike Jan 2017

Synthesis, Characterization, And Activity Of Co/Fe Alumina/Silica Supported Ft Catalysts And The Study Of Promoter Effect Of Ruthenium, Sunday Azubike Esumike

Doctoral Dissertations

The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps.

The alumina supported catalysts were dominated by γ-alumina …


Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun Oct 2016

Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun

Doctoral Dissertations

Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery.

In this study, a drug delivery system was built based on halloysite …


Generalized Partial Directed Coherence And Centrality Measures In Brain Networks For Epileptogenic Focus Localization, Joshua Aaron Adkinson Oct 2016

Generalized Partial Directed Coherence And Centrality Measures In Brain Networks For Epileptogenic Focus Localization, Joshua Aaron Adkinson

Doctoral Dissertations

Accurate epileptogenic focus localization is required prior to surgical resection of brain tissue for treatment of patients with intractable temporal lobe epilepsy, a clinical need that is partially fulfilled to date through a subjective, and at times inconclusive, evaluation of the recorded electroencephalogram (EEG). Using brain connectivity analysis, patterns of causal interactions between brain regions were derived from multichannel EEG of 127 seizures in nine patients with focal, temporal lobe epilepsy (TLE). The statistically significant directed interactions in the reconstructed brain networks were estimated from three second intracranial multi-electrode EEG segments using the Generalized Partial Directed Coherence (GPDC) and validated …


Lab-On-A-Chip Nucleic-Acid Analysis Towards Point-Of-Care Applications, Varun Lingaiah Kopparthy Oct 2016

Lab-On-A-Chip Nucleic-Acid Analysis Towards Point-Of-Care Applications, Varun Lingaiah Kopparthy

Doctoral Dissertations

Recent infectious disease outbreaks, such as Ebola in 2013, highlight the need for fast and accurate diagnostic tools to combat the global spread of the disease. Detection and identification of the disease-causing viruses and bacteria at the genetic level is required for accurate diagnosis of the disease. Nucleic acid analysis systems have shown promise in identifying diseases such as HIV, anthrax, and Ebola in the past. Conventional nucleic acid analysis systems are still time consuming, and are not suitable for point-ofcare applications. Miniaturized nucleic acid systems has shown great promise for rapid analysis, but they have not been commercialized due …


Studies On The Electrical Transport Properties Of Carbon Nanotube Composites, Taylor Warren Tarlton Jul 2016

Studies On The Electrical Transport Properties Of Carbon Nanotube Composites, Taylor Warren Tarlton

Doctoral Dissertations

This work presents a probabilistic approach to model the electrical transport properties of carbon nanotube composite materials. A pseudo-random generation method is presented with the ability to generate 3-D samples with a variety of different configurations. Periodic boundary conditions are employed in the directions perpendicular to transport to minimize edge effects. Simulations produce values for drift velocity, carrier mobility, and conductivity in samples that account for geometrical features resembling those found in the lab. All results show an excellent agreement to the well-known power law characteristic of percolation processes, which is used to compare across simulations. The effect of sample …


Nano Clay-Enhanced Calcium Phosphate Cements And Hydrogels For Biomedical Applications, Udayabhanu Jammalamadaka Jul 2016

Nano Clay-Enhanced Calcium Phosphate Cements And Hydrogels For Biomedical Applications, Udayabhanu Jammalamadaka

Doctoral Dissertations

Biomaterials are used as templates for drug delivery, scaffolds in tissue engineering, grafts in surgeries, and support for tissue regeneration. Novel biomaterial composites are needed to meet multifaceted requirements of compatibility, ease of fabrication and controlled drug delivery. Currently used biomaterials in orthopedics surgeries suffer limitations in toxicity and preventing infections. Polymethyl methacrylate (PMMA) used as bone cement suffers from limitations of thermal necrosis and monomer toxicity calls for development of better cementing biomaterials. A biodegradable/bioresorbable cement with good mechanical properties is needed to address this short coming. Metal implants used in fixing fractures or total joint replacement needs improvements …


Energy Harvesting Using Photovoltaic And Betavoltaic Devices, Ashish Sharma Apr 2016

Energy Harvesting Using Photovoltaic And Betavoltaic Devices, Ashish Sharma

Doctoral Dissertations

There is an important need for improvement in both cost and efficiency of photovoltaic cells. For improved efficiency, a better understanding of solar cell performance is required. An analytical model of thin-film silicon solar cell, which can provide an intuitive understanding of the effect of illumination on its charge carriers and electric current, is proposed. The separate cases of homogeneous and inhomogeneous charge carrier generation rates across the device are investigated. This model also provides for the study of the charge carrier transport within the quasi-neutral and depletion regions of the device, which is of an importance for thin-film solar …


Immobilization Of Cellulase For Large Scale Reactors To Reduce Cellulosic Ethanol Cost, Dezhi Zhang Apr 2016

Immobilization Of Cellulase For Large Scale Reactors To Reduce Cellulosic Ethanol Cost, Dezhi Zhang

Doctoral Dissertations

Cellulosic ethanol is an alternative renewable energy source. Cellulase used in the production of cellulosic ethanol is very expensive. The difficulty in separating cellulase from the cellulose solution after the hydrolysis process limits the reusability of the cellulase, which highly precludes the scales of this application because of the high cost of the enzyme. Immobilization of cellulase provides a promising approach to allow the enzyme to be recycled, thus reducing the production cost. This research focused on immobilizing cellulase for reuse to reduce the cellulosic ethanol cost.

Four immobilization techniques were explored for the immobilization of cellulase on four different …


Clay Nanotube Composites For Antibacterial Nanostructured Coatings, Christen J. Boyer Apr 2016

Clay Nanotube Composites For Antibacterial Nanostructured Coatings, Christen J. Boyer

Doctoral Dissertations

A surging demand for the development of new antimicrobial nanomaterials exists due to the frequency of medical device-associated infections and the transfer of pathogens from highly touched objects. Naturally occurring halloysite clay nanotubes (HNTs) have shown to be ideal particles for polymer reinforcement, time-release drug delivery, nano-reactor synthesis, and as substrate material for nanostructured coatings.

This research demonstrates the feasibility of a novel method for coating HNTs with metals for antibacterial applications. The first ever ability to coat HNTs through electrolysis was developed for customizable and multi-functional antibacterial nanoparticle platforms. HNTs were investigated as substrate for the deposition of copper …


Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai Apr 2016

Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai

Doctoral Dissertations

Encouraged by potential applications in rust coatings, self-healing composites, selective delivery of drugs, and catalysis, the transport of molecular species through Halloysite nanotubes (HNTs), specifically the storage and controlled release of these molecules, has attracted strong interest in recent years. HNTs are a naturally occurring biocompatible nanomaterial that are abundantly and readily available. They are alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame-retardant agents, …


Impedance Characterization Of Ysz Based Nox Sensors, Ling Cui Jan 2016

Impedance Characterization Of Ysz Based Nox Sensors, Ling Cui

Doctoral Dissertations

Yttria-stabilized zirconia has been utilized as an electrolyte of SOFC (Solid Oxide Fuel Cell) studies for years. It is also preferred as the electrolyte for solid state electrochemical sensor which is able to measure nitrogen oxides in the exhaust system. Electrochemical Impedance Spectroscopy method yields the change in impedance which is caused by an electron exchange of NO x gases at the sensing electrodes. From the EIS data, the fractional change in the phase angle is calculated for detecting sensor sensitivity.

Considering the fabrication of a sensor, several variables have been investigated which include the choice of electrolyte processing, sensing …


Size Specific Transfection To Mammalian Cells By Micropillar Array Electroporation, Yingbo Zu Jan 2016

Size Specific Transfection To Mammalian Cells By Micropillar Array Electroporation, Yingbo Zu

Doctoral Dissertations

Electroporation serves as a promising non-viral gene delivery approach, while its current configurations carry drawbacks associated with high-voltage electrical pulses and heterogeneous treatment on individual cells. Here, we developed a new micropillar array electroporation (MAE) platform to advance the delivery of plasmid DNA and RNA to mammalian cells. By introducing well-patterned micropillar array on the electrode surface, the number of pillars each cell faces varies with its cell membrane surface area, despite their large population and random locations. In this way, cell size specific electroporation is conveniently done and contributed to a 2.5~3 fold increase on plasmid DNA transfection and …


Quartz-Mems: Wet Chemical Etching Assisted By Electromagnetic Energy Sources For The Development Of Quartz Crystal To Be Used For Microelectromechanical Systems, William J. Clower Oct 2014

Quartz-Mems: Wet Chemical Etching Assisted By Electromagnetic Energy Sources For The Development Of Quartz Crystal To Be Used For Microelectromechanical Systems, William J. Clower

Doctoral Dissertations

Quartz crystal resonators have been the most commonly used timing devices to date. Today's timing market requires devices to be as small as possible and consume smaller amounts of energy. Because of the market demand, many startup companies have formed to develop silicon resonators as timing devices. Silicon resonators have poor noise and temperature performance (due to its linear temperature versus frequency coefficient). At the moment the only advantage that silicon resonators have over quartz crystal resonators is a small form factor. The photolithography processing method currently being used in industry is a very tedious task, requiring multiple etching steps …


Thermoelectric Elisa For Quantification Of 8ohdg In A Microfluidic Device, Gergana Nestorova Jul 2014

Thermoelectric Elisa For Quantification Of 8ohdg In A Microfluidic Device, Gergana Nestorova

Doctoral Dissertations

This research demonstrates the feasibility of a novel method for performing thermoelectric enzyme-linked immunosorbent assay (ELISA) in a microfluidic device. The feasibility of the thermoelectric ELISA is demonstrated by measuring the concentration of 8-hydroxy 2-deoxyguanosine (8OHdG) in urine samples from amyloid precursor protein (APP) transgenic mice. The detection method is based on formation of a complex between 8OHdG and anti-8OHdG capture antibody conjugated to biotin. The complex is immobilized over the measuring junctions of a thermopile via biotin streptavidin interaction. The concentration of the analyte is determined by using enzyme linked secondary IgG antibody specific to the primary one. The …


Micro Solar Thermal Energy Development And Use For Mems Power Applications, Emmanuel Ogbonnaya Oct 2013

Micro Solar Thermal Energy Development And Use For Mems Power Applications, Emmanuel Ogbonnaya

Doctoral Dissertations

Increasing focus on alternative energy sources has produced significant progress across a wide variety of research areas. One particular area of interest has been solar energy. The sun represents sustainable and renewable energy source capable of meeting present energy needs without compromising the ability of future generations to meet theirs. Energy from the sun can be utilized in multiple ways. Direct rise in modern power generation typically involves either photovoltaic systems or large-scale solar thermal energy installations. While large-scale solar thermal energy generation is well advanced, there has been comparatively little research on smaller scale thermal energy collection and application. …