Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Nanoscience and Nanotechnology

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat Oct 2017

Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat

Masters Theses

Hardware implementations of artificial neural networks (ANNs) have become feasible due to the advent of persistent 2-terminal devices such as memristor, phase change memory, MTJs, etc. Hybrid memristor crossbar/CMOS systems have been studied extensively and demonstrated experimentally. In these circuits, memristors located at each cross point in a crossbar are, however, stacked on top of CMOS circuits using back end of line processing (BOEL), limiting scaling. Each neuron’s functionality is spread across layers of CMOS and memristor crossbar and thus cannot support the required connectivity to implement large-scale multi-layered ANNs.

This work proposes a new fine-grained 3D integrated circuit technology …


Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami Sep 2017

Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami

Physics & Astronomy ETDs

Nano-scale optoelectronic devices have gained significant attention in recent years. Among these devices are semiconductor nanowires, whose dimeters range from 100 to 200 nm. Semiconductor nanowires can be utilized in many different applications including light-emitting diodes and laser diodes. Higher surface to volume ratio makes nanowire-based structures potential candidates for the next generation of photodetectors, sensors, and solar cells. Core-shell light-emitting diodes based on selective-area growth of gallium nitride (GaN) nanowires provide a wide range of advantages. Among these advantages are access to non-polar m-plane sidewalls, higher active region area compared to conventional planar structures, and reduction of threading …


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Graduate Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted …


Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta May 2017

Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta

Mechanical Engineering Undergraduate Honors Theses

Graphene is known to be a key material for improving the performance of hydrogen sensors. High electrical conductivity, maximum possible surface area with respect to volume, and high carrier mobility are a few of the properties that make graphene ideal for hydrogen sensing applications. The problem with utilizing graphene is the difficulty in depositing uniform, thin layers onto substrate surfaces. This study examines a new method of optimizing graphene deposition by utilizing an airbrush to deposit both graphene oxide (GO) and reduced graphene oxide (rGO) onto glass substrates. The number of depositions were varied among samples to study the effect …


Low-Temperature Fabrication Process For Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors, William Paul Clavijo Jan 2017

Low-Temperature Fabrication Process For Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors, William Paul Clavijo

Theses and Dissertations

This work presents a new low-temperature fabrication process of metal oxide nanostructures that allows high-aspect ratio zinc oxide (ZnO) and titanium dioxide (TiO2) nanowires and nanotubes to be readily integrated with microelectronic devices for sensor applications. This process relies on a new method of forming a close-packed array of self-assembled high-aspect-ratio nanopores in an anodized aluminum oxide (AAO) template in a thin (2.5 µm) aluminum film deposited on a silicon and lithium niobate substrate (LiNbO3). This technique is in sharp contrast to traditional free-standing thick film methods and the use of an integrated thin aluminum film …