Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli Nov 2017

The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli

Doctoral Dissertations

Particle dispersions are ubiquitous in our daily lives ranging from food and pharmaceutical products to inks. There has been great interest in the recent years in formulation of functional inks to fabricate myriad flexible electronic devices through high-throughput roll-to-roll technologies. The formulations often contain several functional additives or rheological modifiers that can affect the microstructure, rheology and processing. Understanding the rheology of formulations is important for tuning the formulation for optimal processing. This thesis presents investigations on the rheology of particle dispersions and their impact on roll-to-roll technologies. Shear-thickening behavior is common in particle dispersions, particularly, concentrated particulate inks. We …


Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena Nov 2017

Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena

Doctoral Dissertations

Solution-based crystallization of conjugated polymers offers a scalable and attractive route to develop hierarchical structures for electronic devices. The introduction of well-defined nucleation sites into metastable solutions provides a way to regulate the crystallization behavior, and therefore the morphology of the material. A crystallization method for generating metastable solutions of poly(3-hexylthiophene) (P3HT) was established. These metastable solutions allow P3HT to selectively crystallize into nanofibers (NFs) on graphene-coated surfaces. It was found that the crystallization kinetics is faster with increasing P3HT molecular weight and concentration. Through in situ atomic force microscopy, it was confirmed that NFs grow vertically in a face-on …


Guiding The Self-Assembly Of Block Copolymers In 2d And 3d With Minimal Patterning, Jaewon Choi Nov 2017

Guiding The Self-Assembly Of Block Copolymers In 2d And 3d With Minimal Patterning, Jaewon Choi

Doctoral Dissertations

Directed self-assembly (DSA) of block copolymers (BCPs) based on topographic patterns is one of the most promising strategies for overcoming resolution limitations in the current lithographic process and fabricating the next generation data storage devices. While the DSA of BCPs with deep topographic patterning has been extensively studied both experimentally and theoretically over the past two decades, less attention has been paid to the development of the DSA process using minimal topographic patterning. This dissertation focuses on understanding the effect of minimal topographic patterning on guiding the self-assembly of BCPs in 2D and 3D. We demonstrate that minimal trench patterns …


High Performance Silver Diffusive Memristors For Future Computing, Rivu Midya Mar 2017

High Performance Silver Diffusive Memristors For Future Computing, Rivu Midya

Masters Theses

Sneak path current is a significant remaining obstacle to the utilization of large crossbar arrays for non-volatile memories and other applications of memristors. A two-terminal selector device with an extremely large current-voltage nonlinearity and low leakage current could solve this problem. We present here a Ag/oxide-based threshold switching (TS) device with attractive features such as high current-voltage nonlinearity (~1010), steep turn-on slope (less than 1 mV/dec), low OFF-state leakage current (~10-14 A), fast turn ON/OFF speeds (<75/250 ns), and good endurance (>108 cycles). The feasibility of using this selector with a typical memristor has been demonstrated by physically integrating them …