Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Nanoscience and Nanotechnology

Modelling And Simulation Of The Flexoelectric Effect On A Cantilevered Piezoelectric Nanoplate, Xining Wang Oct 2016

Modelling And Simulation Of The Flexoelectric Effect On A Cantilevered Piezoelectric Nanoplate, Xining Wang

Electronic Thesis and Dissertation Repository

Piezoelectric nanomaterials have attracted increasing attentions due to their distinct electromechanical features, especially the size-dependent properties, which differ greatly from their bulk counterparts.

Due to the large strain gradients presented in nanostructures, the flexoelectricity is believed to be responsible for such size-dependent properties. In this thesis, based on the Kirchhoff plate model and the extended linear piezoelectric theory, a modified continuum mechanics based model is developed to study the size-dependent flexoelectric effect upon the static bending behaviors of a cantilevered piezoelectric nanoplate (PNP). Finite difference method (DFM) is employed to obtain the approximate numerical solutions.

The numerical results indicate that …


Development Of Novel Nanomaterials For Lithium Sulfur Batteries, Xia Li Sep 2016

Development Of Novel Nanomaterials For Lithium Sulfur Batteries, Xia Li

Electronic Thesis and Dissertation Repository

Lithium-sulfur batteries are considered as the most promising next generation high-energy batteries. Compared with other kinds of battery, Li-S batteries have ultra-high theoretical energy density, which is a good candidate for electric vehicles and hybrid electric vehicles in future. However, there are still many challenges to be addressed in Li-S batteries. Design of electrodes, selection of electrolytes, and battery assemble have direct effects on the safety, cost and electrochemical performance of Li-S batteries. Therefore, it is greatly important to develop novel electrodes to achieve high-energy for Li-S batteries. This thesis mainly focuses on the design of sulfur cathode of Li-S …


Hydraulic And Electrokinetic Delivery Of Remediants For In-Situ Remediation, Ahmed I. A. Chowdhury Sep 2016

Hydraulic And Electrokinetic Delivery Of Remediants For In-Situ Remediation, Ahmed I. A. Chowdhury

Electronic Thesis and Dissertation Repository

Nano-scale zero valent iron (nZVI) has shown promising mobility and in-situ reactivity with chlorinated volatile organic compounds when injected into saturated porous media. The current study evaluated nZVI mobility and subsequent reactivity with in-situ contaminants in a variably saturated porous media. The nZVI particles, synthesized onsite at subzero temperatures, demonstrated complete trichloroethene (TCE) degradation within the target area. Furthermore, a three dimensional finite difference model (CompSim) was utilized to investigate nZVI mobility in variably saturated zones. Model predicted well head data were in very good agreement with field observations. Simulation results showed that the injected slurry migrated radially outward from …


Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter Aug 2016

Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter

Electronic Thesis and Dissertation Repository

North American (NA) ginseng is a widely used medicinal plant. Polysaccharides (PS), the major medicinal fractions derived from NA ginseng root, have been shown several biological activities including anti-carcinogenic, anti-aging, immunostimulatory and antioxidant activity. This work focused on nanoprocessing of ginseng PS for enhancing their immunostimulation. Herein, we have developed a novel microfluidic approach to synthesize ginseng PS nanoparticles (NPs) from NA ginseng root. The microfluidics was found to provide unimodal PS spheres down to 20 nm with very narrow particle size distributions. In addition, the immunostimulating effect was investigated on Murine macrophage cell lines, with the results revealing an …


Studies On Nanocomposite Coating Produced By Laser-Assisted Process To Prevent Silicone Hydrogels From Bio-Fouling, Vishnuvardhana Wuppaladhodi Aug 2016

Studies On Nanocomposite Coating Produced By Laser-Assisted Process To Prevent Silicone Hydrogels From Bio-Fouling, Vishnuvardhana Wuppaladhodi

Electronic Thesis and Dissertation Repository

In this thesis, silver nanoparticles incorporated into polyvinylpyrrolidone (PVP) were deposited on silicone hydrogel to improve the hydrophilicity of the silicone hydrogel and prevent the growth of bacteria. Two different processes were employed to produce Ag nanoparticles: (1) Process-A is a photochemical reduction; (2) Process-B is laser ablation in liquid. Following that, MAPLE process was employed to deposit the Ag-PVP nanocomposites on the surface of silicone hydrogel. A solid-state pulsed laser (Nd:YAG) with a wavelength of 532 nm at a fluence of 50.4 mJ/cm2 was used in the MAPLE system to deposit Ag-PVP nanocomposite coating. Our results indicate that …


Electrically Conductive Cotton Textile And Its Applications, Sicong Liu Jun 2016

Electrically Conductive Cotton Textile And Its Applications, Sicong Liu

Electronic Thesis and Dissertation Repository

Electronic textiles (e-textiles) have been considered as important applications in wearable electronics, which can combine the functionality of smart electronic devices with the comfort and flexibility of stylish clothing. Herein, we have successfully prepared a conductive textile via electroless deposition onto cotton textiles by using a three-step treatment process. The cotton textiles are first dipped in P4VP-SU8 solution to form a uniform layer for the subsequent absorption of silver ions. Then, the cotton textiles are immersed in silver nitrate solution in preparation for the next step electroless deposition. The sheet resistance can be as low as 0.05 Ωsq-1. …


Kinetics Of Length Scale Dependent Deformation Of Gold Microspheres And Micropillars, A Z M Ariful Islam Apr 2016

Kinetics Of Length Scale Dependent Deformation Of Gold Microspheres And Micropillars, A Z M Ariful Islam

Electronic Thesis and Dissertation Repository

In this thesis length and time scale dependence of the operative plastic deformation mechanisms in Au is studied. Uniaxial compression tests were performed at various loading rates on FIB-milled Au micropillars and single-crystalline Au microspheres of diameter ranging from 0.8 to 6.0 µm to investigate the incipient and bulk plasticity events. Constant-load ambient-temperature creep tests were performed on the micropillars to study the time-dependent plasticity at very slow strain rates. Uniaxial compression tests were also performed on coated Au microspheres to study the effect of extrinsic constraint on the deformation mechanisms.

During uniaxial compression, both the Au micropillars and microspheres …


Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari Apr 2016

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari

Electronic Thesis and Dissertation Repository

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO2), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrifical hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO2 at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a …


Engineered Quantum Dots For Eva Nanocomposite Films And Tio2 Photocatalysts, Md Abdul Mumin Apr 2016

Engineered Quantum Dots For Eva Nanocomposite Films And Tio2 Photocatalysts, Md Abdul Mumin

Electronic Thesis and Dissertation Repository

Light absorbing inorganic nanoparticles in transparent plastics such as poly(ethylene-co-vinyl acetate) (EVA) are of enormous interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light. However, how to stabilize the QDs for long product life spans without "blinking" while enabling their easy integration into polymer systems is lacking. This work examines different approaches for loading mesoporous silica encapsulated QDs into EVA polymer films which can control plant growth in greenhouses or enhance PV panel efficiencies.

Highly luminescent CdS and CdS-ZnS core-shell QDs …