Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Electrical and Computer Engineering

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 35

Full-Text Articles in Nanoscience and Nanotechnology

Lithium-Sulfur (Selenium) Batteries: Interface Issues And Solving Strategies, Nian-Wu Li, Ya-Xia Yin, Yu-Guo Guo Dec 2016

Lithium-Sulfur (Selenium) Batteries: Interface Issues And Solving Strategies, Nian-Wu Li, Ya-Xia Yin, Yu-Guo Guo

Journal of Electrochemistry

The stable interface is still a challenge for lithium-sulfur (selenium) batteries because of the low conductivity of sulfur (selenium), dissolution of polysulfide (polyselenide), volume expansion of sulfur (selenium), and lithium dendrite growth. This review describers some recent developments in lithium-sulfur (selenium) batteries and highlights our efforts in this field. The possible strategies for building stable interface in the lithium-sulfur (selenium) batteries including nano-restriction effect, chemical bonding, interface adsorption, surface coating, electrolyte optimization, and Lithium anode treatment have been discussed.


Syntheses Of Ag@Pd@Pt Nanoparticles With Tunable Shell Thickness For Electrochemical Oxidation Of Formic Acid, Xiao-Dong Lin, Du-Hong Chen, Zhong-Qun Tian Dec 2016

Syntheses Of Ag@Pd@Pt Nanoparticles With Tunable Shell Thickness For Electrochemical Oxidation Of Formic Acid, Xiao-Dong Lin, Du-Hong Chen, Zhong-Qun Tian

Journal of Electrochemistry

In an effort to lower cost of a catalyst, the silver (Ag) core with palladium (Pd) layer then platinum (Pt) island (Ag@Pd@Pt) nanoparticles were synthesized and the electrocatalytic activity of Ag@Pd@Pt nanoparticles on formic acid was compared with that of Au@Pd@Pt nanoparticles reported previously. The results showed that the existence of a small amount of Pt could significantly improve the activity of the catalyst. When the surface coverage of Pt approached 0.5 monolayers, the activity of Ag@Pd@Pt nanoparticles reached the maximum. Though the onset potential of the electro-oxidation was slightly more positive (about 50 mV), the overall electrocatalytic activity of …


Stm Investigation Of Oxygen Reduction Reaction On Solid Interface In Fuel Cell, Zhen-Feng Cai, Bing Sun, Wen-Jie Jiang, Ting Chen, Dong Wang, Li-Jun Wan Dec 2016

Stm Investigation Of Oxygen Reduction Reaction On Solid Interface In Fuel Cell, Zhen-Feng Cai, Bing Sun, Wen-Jie Jiang, Ting Chen, Dong Wang, Li-Jun Wan

Journal of Electrochemistry

An electrocatalyst for oxygen reduction reaction (ORR) is an important component for fuel cells. An investigation at interfacial electrochemical reactions toward ORR at a molecular scale benefits mechanistic understanding as well as rational design of catalysts. Scanning tunneling microscopy (STM) has been proven to be a powerful tool to monitor chemical reactions and to provide in-situ information about the interfacial electrochemical reactions at a molecular level. This review summarizes the recent STM studies in monitoring the interface processes such as morphological changes, molecular changes, reaction intermediates, and oxidation products. The prospects of future development in this field are outlined.


Synthesis Of Ultrathin Co3O4 Nanoflakes Film Material For Electrochemical Sensing, Hui-Juan Wang Dec 2016

Synthesis Of Ultrathin Co3O4 Nanoflakes Film Material For Electrochemical Sensing, Hui-Juan Wang

Journal of Electrochemistry

Ultrathin cobalt oxide (Co3O4 ) nanoflakes film material was synthesized by using an electro-deposited cobalt layer as a raw material through a simple oxidation method and followed by a heat treatment at 350 oC. The physical characterizations of the Co3O4 nanoflakes film were performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technologies, and the electrochemical activity was measured by cyclic voltammetry (CV). As a promising material for electrochemical sensing, the as-synthesized ultrathin Co3O4 nanoflakes film material exhibited excellent electrochemical activity for H2O …


Towards Building A Prototype Spin-Logic Device, Ashish Verma Penumatcha Dec 2016

Towards Building A Prototype Spin-Logic Device, Ashish Verma Penumatcha

Open Access Dissertations

Since the late 1980s, several key discoveries, such as Giant and Tunneling Magne- toresistance, and advances in magnetic materials have paved the way for exponentially higher bit-densities in magnetic storage. In particular, the discovery of Spin-Transfer Torque (STT) has allowed information to be written to individual magnets using spin-currents. This has replaced the more traditional Oersted-field control used in field-MRAMs and allowed further scaling of magnetic-memories. A less obvious con- sequence of STT is that it has made possible a logic-technology based on magnets controlled by spin-polarized currents. Charge-coupled Spin Logic (CSL) is one such device proposal that couples a …


Analog Spiking Neuromorphic Circuits And Systems For Brain- And Nanotechnology-Inspired Cognitive Computing, Xinyu Wu Dec 2016

Analog Spiking Neuromorphic Circuits And Systems For Brain- And Nanotechnology-Inspired Cognitive Computing, Xinyu Wu

Boise State University Theses and Dissertations

Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan Nov 2016

Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan

Nanoscience and Microsystems ETDs

Infrared (IR) hybrid detector arrays and discrete detectors operated in the space environment may be subjected to a variety of sources of natural radiation while in orbit. This means IR detectors intended for applications such as space-based intelligence, surveillance, and reconnaissance (ISR) or space-situational awareness (SSA) must not only have high performance (high quantum efficiency, h and low dark-current density, JD, and preferably minimal 1/f noise content), but also their radiation tolerance or ability to withstand the effects of the radiation they would expect to encounter in space must be characterized and well understood. As the effects of …


Micro/Nano-Structured Electrode Materials For Sodium-Ion Batteries, Shuang Yuan, Yun-Hai Zhu, Sai Wang, Tao Sun, Xin-Bo Zhang, Qiang Wang Oct 2016

Micro/Nano-Structured Electrode Materials For Sodium-Ion Batteries, Shuang Yuan, Yun-Hai Zhu, Sai Wang, Tao Sun, Xin-Bo Zhang, Qiang Wang

Journal of Electrochemistry

Sodium has similar physics and chemical properties to lithium, alternatively, sodium (Na)-ion batteries have again aroused a great deal of interest recently, particularly for large-scale stationary energy storage applications due to the practically infinite sodium resources and low cost. However, the technics and materials for Na-ion batteries are immature. Therefore, development of advanced anode and cathode materials for Na-ion batteries is urgently desired but remains a great challenge. This paper briefly reviews some recent progresses in this field, addressing the morphology effects, as well as functions of carbon composite materials toward Na-ion batteries. Several electrode materials with micro/nano-structures based on …


Template-Assisted Hydrothermal Synthesis Of Nio@Co3O4 Hollow Spheres With Hierarchical Porous Surfaces For Supercapacitor Applications, Wen Zhou, Xue-Feng Lu, Ming-Mei Wu, Gao-Ren Li Oct 2016

Template-Assisted Hydrothermal Synthesis Of Nio@Co3O4 Hollow Spheres With Hierarchical Porous Surfaces For Supercapacitor Applications, Wen Zhou, Xue-Feng Lu, Ming-Mei Wu, Gao-Ren Li

Journal of Electrochemistry

Hollow structures have shown great potentials in a variety of important applications, such as energy conversion and storage. In order to further enhance the performance, the rational design of hollow structures with higher complexity in terms of composition and structure is highly desirable and still remains a great challenge. In this work, an efficient strategy was established for the fabrication of novel NiO@Co3O4 hollow spheres (HSs) with hierarchical porous surfaces by silica spheres template-assisted hydrothermal synthesis. The as-fabricated NiO@Co3O4 HSs showed high specific surface area of 219.68 m2·g-1, and significant …


The Study Of Dynamical Electrochemical Impedance Spectroscopy For Oxygen Reduction Reaction On Pt/C Catalyst, Kun-Ming Shi, Jian-Wei Guo, Jia Wang Oct 2016

The Study Of Dynamical Electrochemical Impedance Spectroscopy For Oxygen Reduction Reaction On Pt/C Catalyst, Kun-Ming Shi, Jian-Wei Guo, Jia Wang

Journal of Electrochemistry

With joint techniques of rotating disc electrode(RDE) and electrochemical impedance spectroscopy(EIS), and further establishment on equivalent circuit model, this paper studied oxygen reduction reaction(ORR) on commercial Pt/C catalyst in acid medium. Our results found that the dynamical interface on Pt/C consists of two independent processes: 1) the PtO reduction from Pt surface, 2) the new PtO formation from ORR, thus providing key clues for catalyst stability and activity. This also implied that the dynamical interface facilitates reconstruction for porous electrode, and matches with mass transfer. One important issue is discovered that at high overpotential, the high reaction rate for ORR …


Preparations And Photoelectrochemical Properties Of Phosphate Modified Rgo-Biobr Nanocomposites, Shuang-Ying Chen, Zhi-Jun Li, Xu-Liang Zhang, Kang Hu, Rui Yan, Li-Qiang Jing Aug 2016

Preparations And Photoelectrochemical Properties Of Phosphate Modified Rgo-Biobr Nanocomposites, Shuang-Ying Chen, Zhi-Jun Li, Xu-Liang Zhang, Kang Hu, Rui Yan, Li-Qiang Jing

Journal of Electrochemistry

The RGO-BiOBr nanocomposites have been successfully synthesized by a hydrothermal process, and then modified with phosphorous acids. The photoelectrochemical properties of the fabricated RGO-BiOBr nanocomposite films were studied. The results indicate that the photocurrent densities of RGO-BiOBr were much larger compared with those of the bare BiOBr, and interestingly, the photocurrent densities were further improved after phosphate modification. Based on the analyses of the produced hydroxyl radical amounts, the enhanced photocurrent densities could be attributed to the introduction of RGO and to the formed negative fields of modified phosphate groups, which are favorable for electrons to be transferred and for …


Activation Effect Of Nano-Carbon Derived From Co2 On Lead Electrode In Sulfuric Aqueous Solution, Yu-Qiao Song, Hua Zhu, Guang-Jin Zhao, Wen-Long Wu, Shou-Bin Zhou, Di-Hua Wang Aug 2016

Activation Effect Of Nano-Carbon Derived From Co2 On Lead Electrode In Sulfuric Aqueous Solution, Yu-Qiao Song, Hua Zhu, Guang-Jin Zhao, Wen-Long Wu, Shou-Bin Zhou, Di-Hua Wang

Journal of Electrochemistry

Serious sulfation of the negative plate is one of the most popular reasons of the early failure of lead-acid battery. Addition of nano-carbon was proved to be effective for recovering the sulfated electrode and the property of the carbon material always plays an important role. In this work, a new kind of nano-carbon material with high electrical conductivity and good adsorption capability for heavy metal cations, which is electrochemically prepared from CO2 in molten carbonates, was tested as activation additive for the sulfated lead electrode by cyclic voltammetry and SEM measurements. The results showed that the as-prepared carbon can …


Architectures And Algorithms For Intrinsic Computation With Memristive Devices, Jens Bürger Aug 2016

Architectures And Algorithms For Intrinsic Computation With Memristive Devices, Jens Bürger

Dissertations and Theses

Neuromorphic engineering is the research field dedicated to the study and design of brain-inspired hardware and software tools. Recent advances in emerging nanoelectronics promote the implementation of synaptic connections based on memristive devices. Their non-volatile modifiable conductance was shown to exhibit the synaptic properties often used in connecting and training neural layers. With their nanoscale size and non-volatile memory property, they promise a next step in designing more area and energy efficient neuromorphic hardware.

My research deals with the challenges of harnessing memristive device properties that go beyond the behaviors utilized for synaptic weight storage. Based on devices that exhibit …


Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man Aug 2016

Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man

Open Access Dissertations

Research on nanophotonic structures for three application areas is described, a near perfect optical absorber based on a graphene/dielectric stack, an ultraviolet bandpass filter formed with an aluminum/dielectric stack, and structures exhibiting homogenizable magnetic properties at infrared frequencies. The graphene stack can be treated as a effective, homogenized medium that can be designed to reflect little light and absorb an astoundingly high amount per unit thickness, making it an ideal dark material and providing a new avenue for photonic devices based on two-dimensional materials. Another material stack arrangement with thin layers of metal and insulator forms a multi-cavity filter that …


Efficient Inelastic Scattering In Atomistic Tight Binding, James A. Charles Aug 2016

Efficient Inelastic Scattering In Atomistic Tight Binding, James A. Charles

Open Access Theses

In this thesis, the coherent and incoherent transport simulation capabilities of the multipurpose nanodevice simulation tool NEMO5 are presented and applied on transport in tunneling field-effect transistors (TFET). A gentle introduction is given to the non-equilibrium Green's function theory. The comparison with experimental resistivity data confirms the validity of the electron-phonon scattering models. Common pitfalls of numerical implementations such as current conservation, energy mesh resolution, and recursive Green's function stability and the applicability of common approximations of scattering self-energies are discussed. The impact of phonon-assisted tunneling on the performance of TFETs is exemplified with a concrete Si nanowire device. The …


Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam Aug 2016

Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam

Open Access Dissertations

Silicon nanowires are promising building blocks for high-performance electronics and chemical/biological sensing devices due to their ultra-small body and high surface-to-volume ratios. However, the lack of the ability to assemble and position nanowires in a highly controlled manner still remains an obstacle to fully exploiting the substantial potential of nanowires. Here we demonstrate a one-step method to synthesize intrinsic and doped silicon nanowires for device applications. Sub-diffraction limited nanowires as thin as 60 nm are synthesized using laser direct writing in combination with chemical vapor deposition, which has the advantages of in-situ doping, catalyst-free growth, and precise control of position, …


Design, Fabrication And Testing Of Monolithic Low-Power Passive Sigma-Delta Analog-To-Digital Converters, Angsuman Roy Aug 2016

Design, Fabrication And Testing Of Monolithic Low-Power Passive Sigma-Delta Analog-To-Digital Converters, Angsuman Roy

UNLV Theses, Dissertations, Professional Papers, and Capstones

Analog-to-digital converters are critically important in electronic systems. The

difficulty in meeting high performance parameters increases as integrated circuit design

process technologies advance into the deep nanometer region. Sigma-delta analog-todigital

converters are an attractive option to fulfill many data converter requirements.

These data converters offer high performance while relaxing requirements on the precision

of components within an integrated circuit. Despite this, the active integrators found within

sigma-delta analog-to-digital converters present two main challenges. These challenges are

the power consumption of the active amplifier and achieving gain-bandwidth necessary for

sigma-delta data converters in deep nanometer process technologies. Both of these

challenges …


Complete Design Methodology Of A Massively Parallel And Pipelined Memristive Stateful Imply Logic Based Reconfigurable Architecture, Kamela Choudhury Rahman Jun 2016

Complete Design Methodology Of A Massively Parallel And Pipelined Memristive Stateful Imply Logic Based Reconfigurable Architecture, Kamela Choudhury Rahman

Dissertations and Theses

Continued dimensional scaling of CMOS processes is approaching fundamental limits and therefore, alternate new devices and microarchitectures are explored to address the growing need of area scaling and performance gain. New nanotechnologies, such as memristors, emerge. Memristors can be used to perform stateful logic with nanowire crossbars, which allows for implementation of very large binary networks that can be easily reconfigured. This research involves the design of a memristor-based massively parallel datapath for various applications, specifically SIMD (Single Instruction Multiple Data) like architecture, and parallel pipelines. The dissertation develops a new model of massively parallel memristor-CMOS hybrid datapath architectures at …


Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite May 2016

Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite

Publications and Research

Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0°C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.


Feed-Forward Inhibitory Circuits In Hippocampus And Their Computational Role In Fragile X Syndrome, Sarah Lauren Wahlstrom Helgren May 2016

Feed-Forward Inhibitory Circuits In Hippocampus And Their Computational Role In Fragile X Syndrome, Sarah Lauren Wahlstrom Helgren

McKelvey School of Engineering Theses & Dissertations

Feed-forward inhibitory (FFI) circuits are canonical neural microcircuits. They are unique in that they are comprised of excitation rapidly followed by a time-locked inhibition. This sequence provides for a powerful computational tool, but also a challenge in the analysis and study of these circuits. In this work, mechanisms and computations of two hippocampal FFI circuits have been examined. Specifically, the modulation of synaptic strength of the excitation and the inhibition is studied during constant-frequency and naturalistic stimulus patterns to reveal how FFI circuit properties and operations are dynamically modulated during ongoing activity. In the first part, the FFI circuit dysfunction …


Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell May 2016

Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell

Electronic Theses and Dissertations

Photoelectrochemical water splitting has been identified as a promising route for achieving sustainable energy future. However, semiconductor materials with the appropriate optical, electrical and electrochemical properties have yet to be discovered. In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never tested for PEC performance is proposed here and investigated. Density functional theory (DFT+U) techniques were utilized to predict band gap and band edge energetics for GaSbP alloys with low amount of antimony. The overall objective of this dissertation is to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting application. Specifically, …


Preparation And Performance Of 3d Graphene Type Porous Carbon Employing Nano Fe(Oh)3 As Template For Oxygen Reduction Catalyst, Chong-Yun Sun, Zhong-Fang Li, Xue-Wei Lu, Xi-Zhan Zhong, Yu-Rong Liu Apr 2016

Preparation And Performance Of 3d Graphene Type Porous Carbon Employing Nano Fe(Oh)3 As Template For Oxygen Reduction Catalyst, Chong-Yun Sun, Zhong-Fang Li, Xue-Wei Lu, Xi-Zhan Zhong, Yu-Rong Liu

Journal of Electrochemistry

The 3D graphene type porous carbon was prepared using coal tar pitch as carbon source and nano Fe(OH)3 as template. Optimal conditions for the catalytic oxygen reduction performance were determined as: the mass ratio of coal tar, nano Fe(OH)3 and KOH is 6:8:4; the pyrolysis temperature is 800 oC. SEM images show that the products have uniformly porous structure. TEM images demonstrate that the products are porous with foam shapes. HRTEM images further indicate that the products have formed several-layers 3D graphene structure, which are also supported by XRD and Raman data, and the pore size mainly …


Syntheses Of Carbon Paper Supported High-Index Faceted Pt Nanoparticles And Their Performance In Direct Formic Acid Fuel Cells, Long Huang, Mei Zhan, Yu-Cheng Wang, Yan-Fen Lin, Shuo Liu, Ting Yuan, Hui Yang, Shi-Gang Sun Apr 2016

Syntheses Of Carbon Paper Supported High-Index Faceted Pt Nanoparticles And Their Performance In Direct Formic Acid Fuel Cells, Long Huang, Mei Zhan, Yu-Cheng Wang, Yan-Fen Lin, Shuo Liu, Ting Yuan, Hui Yang, Shi-Gang Sun

Journal of Electrochemistry

Direct formic acid fuel fuels (DFAFCs) are promising energy source for portable electronic devices. Palladium (Pd) is more active than platinum (Pt) for the formic acid electrooxidation. However, the stability of Pd is much poorer than that of Pt. Unfortunately, the ultra-low natural abundance of the Pt makes it extremely expensive and limits its application as a fuel cell catalyst. Boosting both the activity and stability of Pt nanoparticles to enhance their efficiency is urgent. As previous works illustrated, nanoparticles enclosed with high-index facets usually bare a higher activity toward fuel cell related reactions than those nanoparticles with low-index facet. …


Energy Harvesting Using Photovoltaic And Betavoltaic Devices, Ashish Sharma Apr 2016

Energy Harvesting Using Photovoltaic And Betavoltaic Devices, Ashish Sharma

Doctoral Dissertations

There is an important need for improvement in both cost and efficiency of photovoltaic cells. For improved efficiency, a better understanding of solar cell performance is required. An analytical model of thin-film silicon solar cell, which can provide an intuitive understanding of the effect of illumination on its charge carriers and electric current, is proposed. The separate cases of homogeneous and inhomogeneous charge carrier generation rates across the device are investigated. This model also provides for the study of the charge carrier transport within the quasi-neutral and depletion regions of the device, which is of an importance for thin-film solar …


Fabrication Of Riboflavin Electrochemical Sensor Based On Au Nanoparticles/Polydopamine/Carbon Nanotubes Modified Glassy Carbon Electrode, Hua-Ping Peng, Mei-Ling Yu, Xin Liu, Pan Liu, Wei Chen, Ai-Lin Liu, Xin-Hua Lin Feb 2016

Fabrication Of Riboflavin Electrochemical Sensor Based On Au Nanoparticles/Polydopamine/Carbon Nanotubes Modified Glassy Carbon Electrode, Hua-Ping Peng, Mei-Ling Yu, Xin Liu, Pan Liu, Wei Chen, Ai-Lin Liu, Xin-Hua Lin

Journal of Electrochemistry

A novel electrochemical platform for the high sensitivity detection of riboflavin was constructed by Au nanoparticles/polydopamine/carbon nanotubes (Au-PDA-MWCNTs) nanocomposite modified glassy carbon electrode. The Au-PDA-MWCNTs nanocomposite was synthesized by in situ reduction method. The characteristics of the as-prepared Au-PDA-MWCNTs nanocomposite modified electrodes were investigated by using UV-Vis spectroscopy, scanning electron microscopy (SEM) and electrochemical methods. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrochemical behavior of riboflavin (RF) at Au-PDA-MWCNTs nanocomposite modified electrodes. The results demonstrated that the present electrochemical sensor exhibited a wide linear range from 5×10-9 mol•L-1to 1×10-5 mol•L …


Electrochemical Determination Of Hg(Ii) At Gold Nanoparticles@Carbonaceous Microspheres Modified Electrode, Tian-Yu Qiu, Ming-Chun Wang, Xian-Feng Du, Tian-Jia Jiang, Xing-Jiu Huang Feb 2016

Electrochemical Determination Of Hg(Ii) At Gold Nanoparticles@Carbonaceous Microspheres Modified Electrode, Tian-Yu Qiu, Ming-Chun Wang, Xian-Feng Du, Tian-Jia Jiang, Xing-Jiu Huang

Journal of Electrochemistry

The gold nanoparticles@carbonaceous microspheres (Au@CMSs) and Au@CMSs modified glassy carbon electrode (GCE) were prepared. The Au@CMSs modified GCE was further examined for possible sensitive detection of mercury ions (Hg(II)) in an aqueous solution by square wave anodic stripping voltammetry (SWASV). The excellent performance was found in the stripping analysis of Hg(II) in 0.1 mol•L-1 NaAc-HAc(pH=5.0) with a sensitivity of 25.863 A•(mol•L-1)-1 and a detection limit of 3.69×10-8 mol•L-1 based on the 3σ method.


Development Of A Physical And Electronic Model For Ruo2 Nanorod Rectenna Devices, Justin Dao Jan 2016

Development Of A Physical And Electronic Model For Ruo2 Nanorod Rectenna Devices, Justin Dao

Graduate College Dissertations and Theses

Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications.

In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning …


Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal, Angelo Peter Karavolos Jan 2016

Implementation Of New System For Oxygen Generation And Carbon Dioxide Removal, Angelo Peter Karavolos

Open Access Theses & Dissertations

This research effort develops an integrated system for CO2 removal and O2 production. A unique material, dodeca-tungsto-phosphoric acid (H3PO4W12O3; henceforth referred to as DTPA) is mixed with tetra-ethyl-ortho-silicate Si(OC2H5)4 or TEOS. This mixture exhibits unique properties of heat absorption and high electrical conductivity. In the system described herein, the DTPA resides within a cross linked arrangement of TEOS. The DTPA furnishes a source of O2, while the TEOS furnishes structural support for the large DTPA crystals. In addition, the large amount of H2O within the crystal also adsorbs CO2. It can also be cross-linked with other polymers such as polycarbonate, …


Electric Field Controlled Strain Induced Switching Of Magnetization Of Galfenol Nanomagnets In Magneto-Electrically Coupled Multiferroic Stack, Hasnain Ahmad Jan 2016

Electric Field Controlled Strain Induced Switching Of Magnetization Of Galfenol Nanomagnets In Magneto-Electrically Coupled Multiferroic Stack, Hasnain Ahmad

Theses and Dissertations

The ability to control the bi-stable magnetization states of shape anisotropic single domain nanomagnets has enormous potential for spawning non-volatile and energy-efficient computing and signal processing systems. One of the most energy efficient switching methods is to adopt a system of a 2-phase multiferroic nanomagnet, where a voltage applied on the piezoelectric layer generates a strain in it and the strain is elastically transferred to the magnetostrictive nanomagnet which rotates the magnetization states of the nanomagnet at room temperature via the converse magnet-electric effect. Recently, it has been demonstrated that the magnetization of a Co nanomagnet can be switched between …