Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Local Heating With Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles, Urcan Guler, Justus Ndukaife, Gururaj Naik, Agbai Nnanna, Alexander Kildishev, V. Shalaev, Alexandra Boltasseva Jul 2015

Local Heating With Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles, Urcan Guler, Justus Ndukaife, Gururaj Naik, Agbai Nnanna, Alexander Kildishev, V. Shalaev, Alexandra Boltasseva

U. Guler

Titanium nitride is considered a promising alternative plasmonic material and is known to exhibit localized surface plasmon resonances within the near-infrared biological transparency window. Here, local heating efficiencies of disk-shaped nanoparticles made of titanium nitride and gold are compared in the visible and near-infrared regions numerically and experimentally with samples fabricated using e-beam lithography. Results show that plasmonic titanium nitride nanodisks are efficient local heat sources and outperform gold nanodisks in the biological transparency window, dispensing the need for complex particle geometries.


Color And Texture Morphing With Colloids On Multilayered Surfaces.Pdf, Shumin Li Mar 2015

Color And Texture Morphing With Colloids On Multilayered Surfaces.Pdf, Shumin Li

Shumin Li

ABSTRACT: Dynamic morphing of marine species to match with environment
changes in color and texture is an advanced means for surviving, self-defense, and
reproduction. Here we use colloids that are placed inside a multilayered structure to
demonstrate color and texture morphing. The multilayer is composed of a thermal
insulating base layer, a light absorbing mid layer, and a liquid top layer. When external
light of moderate intensity (∼0.2 W cm−2) strikes the structure, colloids inside the
liquid layer will be assembled to locations with an optimal absorption. When this
system is exposed to continuous laser pulses, more than 18 000 …


Color And Texture Morphing With Colloids On Multilayered Surfaces, Ziguang Chen, Shumin Li, Andrew Arkebauer, George Gogos, Li Tan Jan 2015

Color And Texture Morphing With Colloids On Multilayered Surfaces, Ziguang Chen, Shumin Li, Andrew Arkebauer, George Gogos, Li Tan

Department of Mechanical and Materials Engineering: Faculty Publications

Dynamic morphing of marine species to match with environment changes in color and texture is an advanced means for surviving, self-defense, and reproduction. Here we use colloids that are placed inside a multilayered structure to demonstrate color and texture morphing. The multilayer is composed of a thermal insulating base layer, a light absorbing mid layer, and a liquid top layer. When external light of moderate intensity (∼0.2 W cm−2) strikes the structure, colloids inside the liquid layer will be assembled to locations with an optimal absorption. When this system is exposed to continuous laser pulses, more than 18 000 times …


Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties And Applications, Urcan Guler, Sergey Suslov, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir M. Shalaev Dec 2014

Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties And Applications, Urcan Guler, Sergey Suslov, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir M. Shalaev

U. Guler

Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities …